GRAZING EFFECTS ON FORBS FOR WHITE-TAILED DEER AND PLANT SPECIES

RICHNESS

A Thesis

by

DILLAN JOSEPH DRABEK

Submitted to the College of Graduate Studies

Texas A&M University-Kingsville

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2020

Major Subject: Range and Wildlife Management

ProQuest Number: 28088864

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 28088864

Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author.

All Rights Reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

GRAZING EFFECTS ON FORBS FOR WHITE-TAILED DEER AND PLANT SPECIES RICHNESS

A Thesis

By

DILLAN J. DRABEK

Approved as to style and content by:

J. Alfonso Ortega-S., Ph.D. (Chairman of Committee)

(most)

Timothy E. Fulbright, Ph.D. (Chairman of Committee)

(Member of Committee)

Ail Hunt

David G. Hewitt, Ph.D. (Member of Committee)

Scott E. Henke, Ph. D. (Department Chair)

George Állen Rasmussen, Ph.D. (Vice President for Research & Dean of Graduate Studies)

AUGUST 2020

ABSTRACT

Grazing Effects on Forb for White-tailed Deer and Plant Species Richness (AUGUST 2020)

Dillan Joseph Drabek, B.S., Texas A&M University-Kingsville

Chairman of Committee: J. Alfonso Ortega-S., Ph.D.

Cattle (Bos spp.) grazing has been recommended as a tool to improve wildlife habitat, but available results are inconclusive and sometimes contradictory. Forbs are an important part of a white-tailed deer (Odocoileus virginianus) diet. Consumption of grass by cattle can potentially confer a competitive advantage to forbs resulting in increased forb standing crop. Forb standing crop is also strongly influenced by rainfall and soil properties. My objectives were to: 1) determine the relationship between grass disappearance resulting from herbivory and forb standing crop on the East Foundation ranches located in the Jim Hogg, Kenedy, Starr, and Willacy counties; and 2) determine how large ungulate grazing affected plant species richness. To evaluate cattle grazing effects on grass and forb standing crop and composition, I selected six 2,500 ha study sites located on the East Foundation ranches in south Texas. Fifty 1.5-m² grazing exclosures were randomly placed in each of the six study sites. During the autumn growing season, I sampled vegetation within exclosures and at an outside paired point. I then stored the collected samples in a portable drying room trailer maintaining a temperature of 45° C, to obtain the dry mass (kg). Under the conditions this study was conducted grazing had little effect on forbs for deer. Forb standing crop was optimized (666 kg/ha) with no August rainfall and abundant September rainfall in areas with high sand percentages (90%). I found that grazing

iii

herbivores avoided low productive sites (<562 kg/ha) and models showed that grazing use was an influence in forb production, but rainfall and sand were more important. Plant species richness was affected by grazing use more than abiotic factors in the reduced data set. My results were strongly influenced by the legacy effect of decades of overgrazing and severe drought during 2011 to 2013. Within the time frame of my study, precipitation and sand percentage were more important drivers of forb dynamics than herbivores.

DEDICATION

I would like to dedicate this thesis and all academic achievements I have had throughout my career to my family. Without there continued support and love I do not know where I would be without them. Thank you Ronald Drabek, Carlette Drabek and Charlie Kubesch for being there for me through the hard times, your faith, and helping me to achieve my goals. To my sisters, Jennifer and Abegayle Drabek, your encouragement, guidance, and support has been forever grateful in this journey. Your success Jennifer has helped myself keep fighting until I pursue my goal. Abegayle keep excelling to fulfill your dreams and I am deeply proud of you of all your accomplishments. Thank you Amber Novosad for pushing me to my limits, being supportive, loving, and being a big part of my heart throughout my college career. Uncles, aunts, and cousins thank you for always giving me praise and encouragement in finishing and continuing to pursue my dreams.

ACKNOWLEDGEMENTS

First, I would like to thank God for this opportunity and journey He has taken me throughout college. Without true wisdom, courage, and strength He has given me to surpass the evils and see the good in the end. I would also like to thank my advisor Dr. J. Alfonso Ortega-S. for the continuous support and guidance throughout my college career. His knowledge in range management and as a land stewardship is remarkable and will always be a role model to me. I would like to thank the rest of the committee members, Dr. Timothy E. Fulbright, Dr. David G. Hewitt, and Dr. Tyler Campbell for giving me this opportunity full of experiences, knowledge, and memories.

I would like to thank the East Foundation for major funding support, and other contributing funding from the Houston Safari Club Dan. L. Duncan Scholarship, Quail Coalition Scholarship, and Phil Plant Scholarship. Their continuous support throughout my master's program is forever grateful and being able to work with and to have a research project on the East foundation is a true blessing.

I would like to thank all the help from fellow professors, field technicians, and friends associated with this project: Dr. David B. Wester, R. Saenz, S. Hines, J. Cortez, K. Johnston, D. Rosales, R. Rosales, D. Delgado, J. Mundy, M. Pearson, C. Goll, M. Cruz, K. Castro, J. Flores, A. Schmitgen, A. Bazaldua, C. Roguski, N. Young, and J. Menchaca. I could not have done this project without there hard working and diligent support. I will forever cherish the friendships and memories we had made throughout college. Thank you.

vi

TABLE OF CONTENTS

ABSTRACTiii
DEDICATIONv
ACKNOWLEDGEMENTSvi
TABLE OF CONTENTS
LIST OF TABLESix
LIST OF FIGURESx
CHAPTER 1: GRAZING EFFECTS ON FORBS FOR WHITE-TAILED DEER AND PLANT SPECIES RICHNESS
Background1
Methods
Study Area5
Data Collection10
Statistical Analyses11
Results15
Forb Standing Crop (Complete Data Set)15
Forb Standing Crop (Reduced Data Set)24
Plant Species Richness (Complete Data Set)
Plant Species Richness (Reduced Data Set)40
Discussion
Conclusion
References
APPENDIX A. Rainfall, soil, number of sampling points used, and grazing use by year. Locations are represented as: 1 – San Antonio Viejo Site 1, 2 – San Antonio Viejo Site 2, 3 – San Antonio Viejo Site 3, 4 – Buena Vista, 5 – Santa Rosa, 6 – El Sauz

APPENDIX B. List of most common forbs preferred by white-tailed deer, determined from previous research regarding forb palatability to deer in south Texas, identified on 4 East
Foundation ranches, autumn 2012-autumn 2019
APPENDIX C. List of grasses identified on 4 East Foundation ranches, autumn 2012 – spring 2019
APPENDIX D. List of non-preferred deer forbs, determined from previous research regarding forb palatability to deer in south Texas, identified on 4 East Foundation ranches, autumn 2012-autumn 2019
VITA

LIST OF TABLES

Chapter 1

Cattle Consumption affecting Plant Species Richness and Forb Production Preferred by

White-tailed Deer in Autumn

Table 4. Average non-preferred forb standing crop (kg/ha) among study sites throughout the years (2012-2019). Study sites are labeled as: 1 – San Antonio Viejo Site 1, 2 – San Antonio Viejo Site 2, 3 – San Antonio Viejo Site 3, 4 – Buena Vista, 5 – Santa Rosa, 6 – El Sauz......13

LIST OF FIGURES

Chapter 1
Figure 1. Potential response of Net Primary Production (NPP) of plants with increasing grazing intensity by herbivores
Figure 2 Location of the four ranches of the East Foundation where the study sites were located during 2012-2019
Figure 3. Soil series of all the ranches and corresponding study sites
Figure 4. Peak total forb standing crop as affected by September rainfall and percent sand using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean August rainfall (\overline{AR}) , grazing use (USE), September rainfall (SR), and mean sand (\overline{S})
Figure 5. Peak total forb standing crop as affected by August rainfall and percent sand using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}) , grazing use (USE) , August rainfall (AR), and the mean sand (\overline{S})
Figure 6. Peak preferred forb standing crop as affected by September rainfall and grazing use using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean August rainfall (\overline{AR}) , grazing use (USE), September rainfall (SR), and mean sand (\overline{S})
Figure 7. Peak preferred forb standing crop as affected by August rainfall and grazing use using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}) , grazing use (USE), August rainfall (AR), and the mean sand (\overline{S}) 20
Figure 8. Peak total forb standing crop as affected by grazing use and sand percentage using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}) , grazing use (USE) , mean August rainfall (\overline{AR}) , and sand (S)
Figure 9. Peak preferred forb standing crop as affected by grazing use and sand percentage using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}) , grazing use (USE), mean August rainfall (\overline{AR}) , and sand (S)21
Figure 10. Peak total forb standing crop as affected by September rainfall and percent sand using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: mean grazing use $(\overline{USE})^2$, mean August rainfall (\overline{AR}) , mean grazing use (\overline{USE}) , September rainfall (SR), and sand (S)

Figure 12. Peak preferred forb standing crop as affected by September rainfall and percent sand using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: mean grazing use $(\overline{USE})^2$, mean August rainfall (\overline{AR}) , mean grazing use (\overline{USE}) , September rainfall (SR), and sand (S).....23

Figure 32. Peak plant species richness as affected by September rainfall and percent sand using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: mean grazing use $(\overline{USE})^2$, mean August rainfall (\overline{AR}) , mean grazing use (\overline{USE}) , September rainfall (SR), and sand (S)......44

Chapter 1

Grazing Effects on Forbs for White-tailed Deer and Plant Species Richness Background

In past observations from 1855, the South Texas Plains where my study was conducted was described as an open grassy plain with low, stunted brush (Inglis 1964). This area is now dominated by dense brush. The grazing history is to understand how past herbicide treatments, grazing strategies, or plants in that area had been affected (Milchunas et al.1988, Cohen et al. 1989, Gofu 2001). Past grazing could affect the vegetation community, and the above ground net primary production (ANPP) in an area (Milchunas 1988). Studies should be conducted for several years to get valid information on the effects of herbivory.

Grazing utilization is the proportion of forage that is consumed or removed by grazing animals during the growing cycle of the plant (Green and Brazee 2012). The goal in grazing management is to leave sufficient forage to preserve the soil and maximize plant vigor (Lyons and Machen 2001). In some cases, cattle grazing may compete with other animals such as whitetailed deer (*Odocoileus virginianus*). Grazing intensity may be consistently increased, leading to competition between cattle and white-tailed deer for forbs, browse, and graminoids (Armstrong 1997, Fulbright and Ortega 2013. Ortega et al. 1997). Other researchers have found that grazing herbivores can influence abundance of forbs by reducing the amount of graminoids.

This chapter follows the formatting for Rangeland Ecology and Management

Ortega et al. (1997) reported on the Welder Wildlife Refuge that if you maintain the rangeland at moderate stocking density (1 AU/4.9 ha/yr.), it can positively influence plants consumed by the white-tailed deer. The East Foundation, where this study takes place, uses regional grazing paradigms of high stocking rate (1 animal unit [AU]/14 ha) and moderate (1 AU/20 ha) (Montalvo et al. 2020). Fulbright and Ortega (2013) mentioned that at intermediate levels of grazing, (moderate level of disturbance) plant species richness increased. Understanding grazing utilization may assist in gaining knowledge of range conditions for optimum wildlife habitat.

The grazing optimization hypothesis (Figure 1) indicates that annual net primary productivity (ANPP) is maximized at some optimum grazing level (Hilbert et al. 1981). This relationship is described by a bell-shaped curve where maximum net primary productivity (NPP) occurs with intermediate levels of grazing, but the gradient declines rapidly beyond the peak moderate grazing level.

Figure 1. Potential response of net primary production of plants with increasing grazing intensity by herbivores (Hilbert et al. 1981).

The intermediate disturbance hypothesis predicts a bell-shaped response of species'

richness goes along a grazing intensity gradient (Milchunas et al. 1988). This model displays how

intermediate grazing intensity can increase plant production during the right conditions. Competition among other plants and animals does not necessarily mean that this intermediate disturbance can be beneficial all of the time (Milchunas et al.1988). Competition among plants is one of the most important mechanisms in vegetation succession stages, and the dominant community phylogeny present in that area then began to emerge (Bestelmeyer et al. 2003, Weigelt et al. 2000). Grazing as a disturbance could set back succession and prevent progression to a stage further (Bestelmeyer et al. 2003, Leopold et al. 1986). Overgrazing and drought could be potential factors for transitioning a plant community throughout time.

Important abiotic and biotic factors that affect plant production include grazing, precipitation, and soil. Legacy effect on rangelands through the history of grazing herbivores may influence plant community aspects present today. Dominance of a certain plant species over another can result from the response to herbivory (Milchunas et al.1988). Grazing can have a positive effect on an area through nutrient cycling, trampling, or wallowing (Milchunas et al. 1988). Grazing also may increase forb abundance and production for white-tailed deer under intermediate disturbances (Fulbright and Ortega 2013, Holechek et al. 1982). Maintaining or increasing plant diversity is one of the most important goals to habitat managers in semi-arid environments (Fulbright and Ortega 2013, Oba et al. 2001). Plant species richness can increase with moderate grazing intensities but may decline rapidly under heavy grazing pressure (Fulbright and Ortega 2013). Diet overlap can even occur between white-tailed deer and cattle at times of the year when forbs are more abundant than grasses or browse species and vice versa. (Fulbright and Ortega 2013).

Forbs play a key role in the diet of white-tailed deer, since forbs provide energy for productive processes (Gallina 1993). Sandy soils and rainfall patterns affect forb productivity,

and peak forb growth may occur in the fall (Drawe and Box 1968). With heavy grazing, diet overlap between cattle and deer occurred and forb consumption by cattle was higher in these areas (Ortega et al. 1997, Thill and Martin 1989). The hump-backed model is commonly used to relate plant species richness with a range of standing crop, maintaining the balance of species richness, diversity, and composition (Smith and Rushton 1994). Tracy and Faulkner (2006) speculate that high plant species richness in pastures can be difficult to measure since some species tend to decline in abundance more often than others.

During drought conditions and heavy grazing, a higher probability of competition between white-tailed deer and cattle can develop (Fulbright and Ortega 2013). Determining the correct stocking rate is necessary to ensure forage production and nutrients for wildlife (Fulbright and Ortega 2013, Ortega et al. 1997). White-tailed deer may move up to 2 km from an area where cattle are being heavily grazing or concentrated (Cooper et al. 2008). Being able to maintain intermediate disturbance to an area and concentrations of grazing herbivores may help improve the white-tailed deer habitat.

Many researchers have found that seasonal precipitation has a great influence on aboveground forage production (Abdel-Magid et al. 1987, Patton et al. 2007, White 1985, Yan et al. 2015). The water accessible for plant growth is found in the upper layers of the soil and may contain the precipitation accumulated from the previous year's growing season (Patton et al. 2007). Prior year precipitation has a major impact of the next years forage production. Temporal patterns, such as seasonal precipitation, have a stronger influence than total quantities of precipitation in arid and semi-arid ecosystems (Yan et al. 2015). Yan et al. (2015) found that annual and growing season precipitation was positively correlated with plant species richness.

Precipitation has a great influence on seed germination, seed bank, and aboveground forage production during succeeding.

Plant-soil feedback influences the performance of a broad range of plant species over relatively long-term scales and is generally consistent across a wide range of soil conditions (Harrison and Bardgett 2010). Abiotic factors also had an important role in microbial production, nutrient cycling, and plant production (Harrison and Bardgett 2010). Stochastic rainfall is common in south Texas rangelands and helps enhance the water movement through stages of the plants growing cycles.

My objective was to assess the influence of grazing utilization on white-tailed deer preferred forb standing crop and plant species richness during the fall growing season (2012-2019). My specific objectives were to: 1.) determine the relationship between grass disappearance resulting from herbivory and forb standing crop on the East Foundation ranches located in the Jim Hogg, Kenedy, Starr, and Willacy counties; and 2.) determine how large ungulate grazing affected plant species richness. I hypothesized that standing crop of forbs would increase with increasing cattle grazing utilization, with forbs preferred by white-tailed deer increasing up to some moderate level of utilization and forbs not preferred by deer increasing up to a higher than moderate level of utilization, and then decline with increasing utilization.

Methods

Study Area

My research occurred on four ranches of the East Foundation, an Agricultural Research Organization that promotes the advancement of land stewardship through ranching, science, and

education. Six study sites of 2500 ha each were selected on the East Foundation properties (Figure 2). These study sites are in the Wild Horse Desert, which includes the Tamaulipan Thorn scrub, Laguna Madre Barrier Islands & Coastal Marshes, Rio Grande Valley, and Coastal Sand Plains ecoregions (East 2007). Three study sites were located on the north (SAV site #1), central (SAV site #2), and southern (SAV site #3) area of the San Antonio Viejo Ranch (SAV) (60,034 ha) which was in Jim Hogg and Starr counties. The other 3 sites were located on the Buena Vista Ranch (BV) (6,113 ha) in Jim Hogg County, the Santa Rosa Ranch (SR) (7,544 ha) in Kenedy County, and the El Sauz Ranch (EELS) (10,984 ha) located in Willacy and Kenedy counties. The ELS consists of active sand dunes, live oak (*Quercus virginiana*) mottes, and saline sub-tropical to semi-arid habitats. Santa Rosa Ranch also contains live oak mottes. Most of the other areas (SAV & BV) are rolling sand plains and some caliche soils containing black brush (*Acacia rigidula*) and mesquite (*Prosopis glandulosa*) with an undergrowth of diverse browse species.

Figure 2. Location of the four ranches of the East Foundation where the study sites were located during 2012-2019.

Rainfall in south Texas is irregular. Most of the rainfall occurs during May-June, and September-October, and a moderate amount during July-August (Fulbright et al. 1990). Table 1 shows the monthly rainfall totals in the study sites. During the autumn months, seed establishment occurs. Rainfall most likely increases the seed bank for the perennial forage that would sprout during the autumn months. An average yearly rainfall of 46 to 70 cm is prominent for the region.

	January	February	March	April	May	June	July	August	September	October	November	December	Total
2011	4.4	0.2	0.9	0.0	2.4	5.4	3.4	0.5	3.8	2.8	0.2	4.9	28.9
2012	0.6	8.4	3.3	3.3	6.5	1.2	6.4	2.2	5.5	0.8	2.3	0.2	40.7
2013	3.9	0.5	0.0	5.8	10.6	2.6	3.1	2.4	16.8	1.3	4.5	5.3	56.6
2014	1.8	1.0	5.0	0.3	7.3	2.8	2.4	5.9	19.5	3.0	11.0	3.3	63.3
2015	3.5	3.0	12.0	12.4	12.3	8.2	1.1	2.4	8.4	17.2	2.7	1.2	84.5
2016	5.7	0.0	7.8	1.7	9.6	10.1	1.4	11.3	5.7	1.5	4.6	4.5	58.2
2017	1.5	2.7	9.9	4.0	6.6	5.4	2.2	4.9	2.6	4.1	2.8	6.7	53.3
2018	1.6	1.5	1.1	2.4	2.7	23.9	0.8	1.4	29.2	6.4	3.1	3.4	77.6
2019	2.8	0.7	2.5	5.2	5.5	7.3	3.3	1.0	10.3	2.6	6.0	1.8	49.0

Table 1. Mean monthly rainfall (cm) during 2011-2019 among all study sites.

Dominant soils series at the 6 study sites include: Nueces-Sarita association, Delmita, Comitas, Galveston, Mustang, Palobia, Sauz, Yturria, Copita, McAllen, and Zapata (Hines 2016). Using the USDA textural class, 81% of the sampling points were classified as being in a sandy soil (>85% sand); 14% of the sampling points located in a loamy sand (between 70%-85% sand); and the remaining 5% of sampling points were found to be in sandy loam soil (52%-70% sand). The SAV site #1 had 100% of the sampling points in sandy soils; site #2 had 86% of the sampling points in sandy soil and 14% of the sampling points in loamy sand; and finally at site #3, 16% of the sampling points were found in sandy soils, 62% in loamy sand, and 22% in sandy loam soils (Figure 3). The BV study site had 96% of the sampling points in sandy soils, 2% in loamy sand, and 2% in sandy loam. In the SR study site, 100% of the sampling points were found in a sandy soil. Lastly, in the EELS study site 88% of the sampling points were found in the sandy soil, 8% in the loamy sand, and 4% in a sandy loam soil.

Figure 3. Soil series of all the ranches and corresponding study sites used.

Data Collection

I used 50 grazing exlosures that were randomly allocated using ArcMap GIS (Geographic Information System) software, 100 m apart from each other, in each one the six 2500 ha study sites from 2012. Beginning in 2013, the exclosures were moved annually corresponding to a specific random cardinal direction (North, East, South, West) generated from the function RANDBETWEEN in Excel. The exclosures were constructed from 4 six-gauge wire cattle panels $(1.5 \text{ m} \times 1.5 \text{ m})$ wired together to prevent collapsing and secured with a t- post in each corner. At least 10 m from each grazing exclosure, to allow adequate distance for possible vegetation trampling that might occur from curious cows inspecting the exclosure, I marked a paired point with a t-post. The paired point was for measurement of forage where large herbivores could graze to show availability of the forage that was consumed by grazing herbivores had similar percentages of plant species and bare ground, and similar distribution of vegetation. Using the difference in forage standing crop of the exclosure and the paired point, I determined the disappearance of grasses and forbs during the autumn since peak plant productivity happens during this time (Fulbright and Ortega 2013).

During autumn, I estimated the forage standing crop and species richness of grasses and forbs in the exclosure and the paired point. A 0.25-m² PVC frame was placed within the center of the exclosure and used hand pruners to clip the forage at ground level to estimate forage standing crop (kg/ha) and determine percentages of the plants and plant species richness. The north cardinal direction was always clipped at the paired point. Plant species richness was measured at plot-scale (number of species per 0.25-m²). The difference in number of species found inside the exclosure and outside paired point was included in the data set. The clipped forbs and grasses were separated in the following categories; grass, preferred forbs, and non-

preferred forbs. Preferred forbs and non-preferred forb species for white-tailed deer was identified from research by Hines 2016. Not all shrub seedlings were collected in the bags, but rather recorded in the notes section and a written percentage of the shrub species cover found in the sampling frame. After the autumn sampling, exclosures were moved each year at least 10 m away from the previous location, so that the destructive method of clipping would not be a factor. The paired point was moved as well. Lastly, the new areas were marked in the GPS (Global Positioning System) to be located the next sampling season.

The clipped forage from inside the exclosure and the outside paired point was separated into preferred forbs, non-preferred forbs, and grasses and placed in paper bags and dried at 45°C in a portable drying room trailer. I then recorded the dry weight of each sample from the exclosures and the paired points to the nearest 0.1g (Multi-Purpose Compact Bench Scale, Ranger 3000, Ohaus Corporation). I used the recorded values of forage standing crop in the exclosure and the paired point during that season to determine percent utilization and forage disappearance. I determined plant species richness inside of the exclosures and the paired points.

I used historical rainfall records from PRISM Climate Data for all locations. The rainfall records that I used were from 2012-2019 in the months of August through November, since these months were more influential towards forb standing crop. The rainfall measurements (millimeters) were used to determine which months and amount of rainfall were important for forage standing crop and plant species richness.

Statistical Analyses

Since the main objective of the study was to determine the effect of grazing (grass disappearance) on forbs for deer, I excluded all negative values of grass utilization (grass

standing crop inside of the exclosure – grass standing crop outside of the exclosure). Considering, that the areas with negative utilization were low productivity sites that herbivores did not graze, these values was excluded from the data set. The negative values was derived from when forage standing crop was more outside the exclosure than inside. Therefore, for the analysis I used a reduced data set, which included all data with positive values of grass disappearance, and the complete data set.

I used three hundred randomly allocated cattle exclosures and paired plots per year to determine how white-tailed deer preferred forb standing crop was affected by grazing herbivores. To determine this, I first calculated forage standing crop for preferred forbs, non-preferred forbs, and grasses. I included abiotic factors such as soil (sand percentage), August through November precipitation (mm), Palmer Drought Severity Index (PDSI), and Keetch-Byram Drought Index (KBDI) at each location.

I used a complete data set and reduced data set to determine if there was any difference in variables that impacted forage standing crop of forbs. From the complete data set, I was able to calculate forage standing crop (kg/ha) for grasses (Table 2), preferred forbs (Table 3), and non-preferred forbs (Table 4) among study sites throughout all the years (2011-2019). The tables shown helps identify the most productive and least productive years during the years of the study.

I used an analysis of variance (ANOVA) and PROC RSREG in SAS to assess relevant models (<2 delta AICs) and which variables influenced forage standing crop with 85% confidence intervals (CI). 85% confidence intervals were used to include variables that may have been influential in the models that were tested so that model-selection and parameter-evaluation

Table 2. Average grass standing crop (kg/ha) among study sites throughout the years (2012-2019). Study sites are labeled as: 1 – San Antonio Viejo Site 1, 2 – San Antonio Viejo Site 2, 3 – San Antonio Viejo Site 3, 4 – Buena Vista, 5 – Santa Rosa, 6 – El Sauz.

	2012	2012	2013	2013	2014	2014	2015	2015	2016	2016	2017	2017	2018	2018	2019	2019
Site	In	<u>Out</u>	In	Out	In	Out	In	<u>Out</u>	In	Out	In	<u>Out</u>	In	Out	In	<u>Out</u>
1	755 ± 146	252 ± 74	386 ± 84	189 ± 48	$1\ 155\pm 128$	882 ± 90	1380 ± 153	1328 ± 149	1391 ± 180	1018 ± 46	508 ± 116	306 ± 72	326 ± 48	519 ± 74	590 ± 87	469 ± 67
2	263 ± 47	17 ± 5	209 ± 45	134 ± 26	564 ± 81	426 ± 121	1767 ± 245	1105 ± 197	1942 ± 500	839 ± 122	352 ± 71	136 ± 25	699 ± 140	551 ± 86	512 ± 87	535 ± 119
3	$1\ 346\pm499$	336 ± 104	$1\ 039 \pm 192$	577 ± 111	$1\ 186 \pm 161$	$1\ 033 \pm 171$	3044 ± 512	2317 ± 524	2027 ± 318	1169 ± 244	1451 ± 218	694 ± 165	1203 ± 209	1044 ± 270	898 ± 113	524 ± 122
4	177 ± 49	71 ± 16	178 ± 53	77 ± 30	803 ± 126	512 ± 82	1871 ± 227	1092 ± 191	1422 ± 153	522 ± 88	1253 ± 141	616 ± 78	948 ± 116	581 ± 75	1115 ± 131	726 ± 120
5	412 ± 75	61 ± 12	521 ± 94	253 ± 50	$2\ 240\pm236$	$1\ 514\pm220$	1313 ± 180	1220 ± 180	1416 ± 203	854 ± 129	404 ± 65	309 ± 55	1107 ± 146	975 ± 166	549 ± 67	649 ± 81
6	801 ± 140	209 ± 40	912 ± 138	371 ± 77	$1\ 716 \pm 194$	638 ± 77	1986 ± 359	1047 ± 194	1632 ± 164	868 ± 129	1117 ± 317	776 ± 166	1204 ± 143	731 ± 100	906 ± 164	738 ± 114

Table 3. Average preferred forb standing crop (kg/ha) among study sites throughout the years (2012-2019). Study sites are labeled as: 1 – San Antonio Viejo Site 1, 2 – San Antonio Viejo Site 2, 3 – San Antonio Viejo Site 3, 4 – Buena Vista, 5 – Santa Rosa, 6 – El Sauz.

	2012	2012	2013	2013	2014	2014	2015	2015	2016	2016	2017	2017	2018	2018	2019	2019
Site	In	<u>Out</u>	In	<u>Out</u>	In	<u>Out</u>	In	<u>Out</u>	In	<u>Out</u>	In	<u>Out</u>	In	<u>Out</u>	In	<u>Out</u>
1	129 ± 17	82 ± 18	256 ± 34	252 ± 94	591 ± 65	476 ± 51	235 ± 41	219 ± 41	159 ± 35	94 ± 27	39 ± 26	10 ± 5	393 ± 60	376 ± 57	84 ± 25	97 ± 20
2	136 ± 25	37 ± 10	263 ± 57	202 ± 32	278 ± 36	208 ± 26	258 ± 50	198 ± 44	84 ± 18	39 ± 10	94 ± 26	54 ± 12	452 ± 76	310 ± 54	140 ± 27	152 ± 36
3	34 ± 20	11 ± 10	82 ± 34	29 ± 18	52 ± 18	44 ± 13	24 ± 16	10 ± 6	3 ± 3	8 ± 5	4 ± 1	8 ± 5	93 ± 32	75 ± 23	30 ± 13	7±7
4	67 ± 15	27 ± 8	346 ± 58	197 ± 39	764 ± 96	806 ± 123	458 ± 82	217 ± 63	47 ± 16	52 ± 25	163 ± 26	100 ± 0	278 ± 52	299 ± 65	239 ± 35	184 ± 40
5	272 ± 81	34 ± 16	502 ± 135	289 ± 59	480 ± 200	297 ± 48	218 ± 64	99 ± 31	271 ± 69	65 ± 25	49 ± 17	7 ± 3	127 ± 38	97 ± 32	92 ± 26	109 ± 27
6	101 ± 28	91 ± 21	498 ± 77	508 ± 115	418 ± 63	498 ± 97	144 ± 47	141 ± 52	217 ± 44	156 ± 67	146 ± 40	206 ± 94	332 ± 107	241 ± 56	200 ± 56	187 ± 41

Table 4. Average non-preferred forb standing crop (kg/ha) among study sites throughout the years (2012-2019). Study sites are labeled as: 1 - San Antonio Viejo Site 1, 2 - San Antonio Viejo Site 2, 3 - San Antonio Viejo Site 3, 4 - Buena Vista, 5 - Santa Rosa, 6 - El Sauz.

	2012	2012	2013	2013	2014	2014	2015	2015	2016	2016	2017	2017	2018	2018	2019	2019
Site	In	<u>Out</u>	In	<u>Out</u>	In	<u>Out</u>	In	<u>Out</u>	In	Out	In	<u>Out</u>	In	<u>Out</u>	In	<u>Out</u>
1	196 ± 38	134 ± 25	73 ± 30	56 ± 21	42 ± 13	167 ± 55	254 ± 60	204 ± 63	99 ± 46	122 ± 66	27 ± 25	75 ± 51	138 ± 55	150 ± 56	35 ± 19	14 ± 8
2	312 ± 61	190 ± 34	119 ± 34	129 ± 38	12 ± 11	43 ± 32	181 ± 35	177 ± 42	78 ± 22	46 ± 10	62 ± 15	42 ± 9	56 ± 17	82 ± 32	16 ± 11	8 ± 8
3	0	0	0	0	44 ± 37	0	5 ± 3	29 ± 29	1 ± 1	12 ± 12	5 ± 5	2 ± 1	0	8 ± 8	0	8 ± 8
4	146 ± 30	88 ± 21	588 ± 83	520 ± 67	91 ± 33	75 ± 21	297 ± 65	206 ± 50	108 ± 16	104 ± 22	110 ± 27	162 ± 26	34 ± 16	89 ± 72	6 ± 3	17 ± 8
5	109 ± 31	48 ± 19	614 ± 110	396 ± 73	73 ± 40	77 ± 51	83 ± 32	67 ± 47	118 ± 28	126 ± 41	36 ± 17	39 ± 13	96 ± 28	101 ± 28	16 ± 12	31 ± 12
6	326 ± 129	204 ± 66	688 ± 179	443 ± 74	265 ± 77	185 ± 52	330 ± 196	81 ± 44	257 ± 67	249 ± 62	182 ± 43	110 ± 13	499 ± 80	487 ± 92	224 ± 80	178 ± 71

criteria would coincide with each other (Arnold 2010). I used PROC GLM to analyze important interactions from covariates that affected the response variable. I used response surface methodology to develop a model to predict forage standing crop of different vegetation components. The variables that were included in in the complete models included rainfall (October through November), drought indices (PDSI & KBDI), sand percentage, and grazing utilization (forage disappearance). I used Plotly Chart Studio to develop a three-dimensional model to produce a humpback plot to "show" the peak forb standing crop.

I determined how grazing herbivores, soil, and rainfall affected plant species richness. Species richness was the total number of plant species found in the exclosures and the paired points. I used analysis of variance and PROC RSREG in SAS to determine the best model (<2 delta AICs) and which variables influenced plant species richness. In the graphs, grass disappearance (kg/ha) was converted to herbivore percent use.

Results

Forb Standing Crop (complete data set)

September rainfall ($\hat{\beta} = 0.00404$, 85% CI: 0.00252 to 0.00555; standardized $\hat{\beta}$: 0.32363, standardized 85% CI: 0.20232 to 0.44494) and sand ($\hat{\beta} = 0.15125$, 85% CI: 0.12615 to 0.17634; standardized $\hat{\beta} = 0.73108$, standardized 85% CI: 0.60977 to 0.85239) were the influential variables affecting total forb standing crop ($\mathbb{R}^2 = 0.6956$; Table 5). September rainfall ($\hat{\beta} = 0.00629$, 85% CI: 0.00396 to 0.00778; standardized $\hat{\beta} = 0.47529$, standardized 85% CI: 0.29961 to .58794), use ($\hat{\beta} = -0.00891$, 85% CI: -0.01724 to 0.00058198; standardized $\hat{\beta} = -0.15318$, standardized 85% CI: -0.29636 to -0.01), and sand ($\hat{\beta} = 0.1178$, 85% CI: 0.08685 to 0.14877; standardized $\hat{\beta} = 0.53696$, standardized 85% CI: 0.39589 to 0.67814) influenced preferred forb standing ($\mathbb{R}^2 = 0.5976$). For total forbs there was an important interaction from use x sand (P=0.0617).

With over 90% grazing use and 385 mm of September rainfall produced a peak total forb standing crop of 726 kg/ha (Figure 4). With over 35% grazing use and 0 mm of August rainfall produced a peak total forb standing crop of 224 kg/ha (Figure 5). With over 90% grazing use and 425 mm of September rainfall produced a peak preferred forb standing crop of 688 kg/ha (Figure 6). With 5% grazing use and 0 mm of August rainfall produced a peak preferred forb standing crop of 140 kg/ha (Figure 7). With 20% grazing use and 90% sand in the soil produced a peak total forb standing crop of 302 kg/ha (Figure 8). With no grazing and 85% sand produced a peak preferred forb standing crop of 666 kg/ha occurred when September rainfall was 325 mm and having 90% sand in the soil (Figure 10). Peak total forb standing crop of 291 kg/ha occurred when August rainfall was 5 mm and 90%

Rank	Response Variable	Covariates	β Estimate	Standardized β	AIC	Δ ΑΙΟ	R ²	85% Confi	dence Limits	Standar Confiden	lized 85% ce Intervals	Model Weight
1	Total Forbs				-33.0152	0	0.6956					0.360595
		September rainfall	0.00404	0.32363				0.00252	0.00555	0.20232	0.44494	
		Sand	0.15125	0.73108				0.12615	0.17634	0.60977	0.85239	
2	Total Forbs				-31.2886	1.7266	0.6974					0.152088
		August rainfall	-0.00129	-0.04297				-0.00505	0.00247	-0.16856	0.08261	
		September rainfall	0.00392	0.31377				0.00235	0.00548	0.18805	0.43949	
		Sand	0.15246	0.73696				0.1269	0.17803	0.61338	0.86054	
3	Total Forbs				-31.1398	1.8754	0.6964					0.141183
		September rainfall	0.00396	0.31772				0.0024	0.00553	0.19251	0.44293	
		Sand	0.15125	0.73109				0.12589	0.1766	0.60852	0.85366	
		use	-0.00157	-0.0287				-0.0084	0.00525	-0.15305	0.09565	
4	Total Forbs				-27.5362	5.479	0.6989					0.023295
		August rainfall	-0.00152	-0.05062				-0.00552	0.00249	-0.18436	0.08312	
		September rainfall	0.00384	0.30792				0.00221	0.00548	0.17706	0.43878	
		Sand	0.15363	0.74261				0.12702	0.18024	0.61399	0.87123	
		use	0.00168	0.03071				-0.01336	0.01673	-0.24355	0.30496	
		use ²	-0.00004181	-0.06475				-0.0021824	0.00013463	-0.33799	0.2085	
1	Preferred Forbs				-11.9761	0	0.5976					0.222923
		September rainfall	0.00629	0.47529				0.00396	0.00778	0.29961	0.58794	
		Sand	0.1178	0.53696				0.08685	0.14877	0.39589	0.67814	
		use	-0.00891	-0.15318				-0.01724	-0.00058198	-0.29636	-0.01	
2	Preferred Forbs				-11.3679	0.6082	0.5751					0.16447
		September rainfall	0.00629	0.47529				0.00439	0.00819	0.33195	0.61862	
		Sand	0.1178	0.53696				0.08635	0.14924	0.36362	0.68029	
3	Preferred Forbs				-10.2573	1.7188	0.5999					0.094389
		August rainfall	-0.00159	-0.05016				-0.00624	0.00305	-0.19642	0.0961	
		September rainfall	0.00573	0.43271				0.00375	0.0077	0.28372	0.58171	
		Sand	0.11931	0.54388				0.08777	0.15086	0.40008	0.68768	
		use	-0.00879	-0.15101				-0.0172	-0.00037254	-0.29562	-0.0064	
4	Preferred Forbs				-10.1085	1.8676	0.5987					0.087622
		September rainfall	0.00589	0.44524				0.00396	0.00782	0.29942	0.59107	
		Sand	0.1189	0.54201				0.8727	0.15053	0.39782	0.68619	
		use	-0.00529	-0.091				-0.02283	0.01224	-0.39249	0.21048	
		use ²	-0.0004818	-0.07036				0.00025311	0.00015675	-0.36965	0.22893	

Table 5. Variables affecting total, preferred, and non preferred forbs standing crop in a eight year on the East Foundation ranch study sites from 2012-2019 for the complete data set.

		_	. •	
Tab	le	5.	continued	L

Rank	Response Variable	Covariates	βEstimate	Standardized β	AIC	Δ ΑΙΟ	R ²	85% Confi	dence Limits	Standaro Confidenc	lized 85% ce Intervals	Model Weight
5	Preferred Forbs				-8.5432	3.4329	0.6023					0.04006
		August rainfall	-0.00206	-0.00648				-0.00694	0.00282	-0.21851	0.08892	
		September rainfall	0.00571	0.43173				0.00372	0.0077	0.28133	0.58214	
		Sand	0.12142	0.55349				0.08899	0.15385	0.40566	0.70132	
		use	-0.00323	-0.05558				-0.02157	0.0151	-0.37079	0.25964	
		use ²	-0.00007345	-0.10728				-0.0028849	0.00014158	-0.42133	0.20678	
1	Non- Preferred Forbs				11.7468	0	0.6273					0.215278
		Sand	0.24101	0.79204				0.20091	0.28111	0.66027	0.92381	
2	Non- Preferred Forbs				12.988	1.2412	0.6332					0.115738
		Sand	0.24157	0.79389				0.20132	0.28182	0.66162	0.92615	
		use	0.00617	0.07648				-0.0045	0.01684	-0.05579	0.20874	
3	Non- Preferred Forbs				13.3459	1.5991	0.6304					0.096774
		September rainfall	0.00103	0.05608				-0.00142	0.00348	-0.0776	0.18975	
		Sand	0.23898	0.78535				0.1983	0.27965	0.65168	0.91903	
4	Non- Preferred Forbs				13.6865	1.9397	0.6278					0.081621
		August rainfall	0.00095868	0.02176				-0.00495	0.00686	-0.11224	0.15576	
		Sand	0.24029	0.78966				0.19951	0.28106	0.65566	0.92366	
5	Non- Preferred Forbs				18.1121	6.3653	0.6398					0.008929
		August rainfall	0.00168	0.03806				-0.00477	0.00812	-0.10823	0.18434	
		September rainfall	0.00151	0.08248				-0.00111	0.00414	-0.06066	0.22561	
		Sand	0.2365	0.77723				0.19369	0.27931	0.63654	0.91791	
		use	0.00437	0.05413				-0.1984	0.02857	-0.24585	0.35411	
		use ²	0.00003859	0.04063				-0.0002452	0.00032244	-0.25824	0.33951	

sand (Figure 11). Peak preferred forb standing crop of 555 kg/ha occurred when September rainfall was 310 mm and 90% sand (Figure 12). Peak preferred forb standing crop of 167 kg/ha occurred when August rainfall was 0 mm and 90% sand (Figure 13). Data also showed that by having no August rainfall and 90% sand maximized total (291 kg/ha) and preferred (167 kg/ha) forbs standing crop when moisture availability was abundant in September. The only variable that influenced non-preferred forbs ($\hat{\beta} = 0.24101$, 85% CI: 0.20091 to 0.28111; standardized $\hat{\beta} =$ 0.79204, standardized 85% CI: 0.66027 to 0.92381) was the sand content (90%), with an R² of 0.6273.

Figure 4. Peak total forb standing crop as affected by September rainfall and percent sand using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use (USE)², mean August rainfall (\overline{AR}), grazing use (USE), September rainfall (SR), and mean sand (\overline{S}).

Figure 5. Peak total forb standing crop as affected by August rainfall and percent sand using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}), grazing use (USE), August rainfall (AR), and the mean sand (\overline{S}).

Figure 6. Peak preferred forb standing crop as affected by September rainfall and grazing use using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean August rainfall (\overline{AR}), grazing use (USE), September rainfall (SR), and mean sand (\overline{S}).

Figure 7. Peak preferred forb standing crop as affected by August rainfall and grazing use using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}) , grazing use (USE), August rainfall (AR), and the mean sand (\overline{S}) .

Figure 8. Peak total forb standing crop as affected by grazing use and sand percentage using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}), grazing use (USE), mean August rainfall (\overline{AR}), and sand (S).

Figure 9. Peak preferred forb standing crop as affected by grazing use and sand percentage using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}) , grazing use (USE), mean August rainfall (\overline{AR}) , and sand (S).

Figure 10. Peak total forb standing crop as affected by September rainfall and percent sand using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: mean grazing use $(\overline{USE})^2$, mean August rainfall (\overline{AR}) , mean grazing use (\overline{USE}) , September rainfall (SR), and sand (S).

Figure 11. Peak total forb standing crop as affected by August rainfall and percent sand using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: mean grazing use $(\overline{USE})^2$, August rainfall (AR), mean grazing use (\overline{USE}) , September rainfall (\overline{SR}) , and sand (S).

Figure 12. Peak preferred forb standing crop as affected by September rainfall and percent sand using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: mean grazing use $(\overline{USE})^2$, mean August rainfall (\overline{AR}) , mean grazing use (\overline{USE}) , September rainfall (SR), and sand (S).

Figure 13. Peak preferred forb standing crop as affected by August rainfall and percent sand using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: mean grazing use $(\overline{USE})^2$, August rainfall (AR), mean grazing use (\overline{USE}) , mean September rainfall (\overline{SR}) , and sand (S). *Forb standing crop (Reduced data set)*

In large ranches, such as where these study sites are located, it is hard to have a homogeneous landscape where cattle can graze most or all the land uniformly. Given this idea, I determined the value of forge standing crop at which cattle avoided sites using all the sampling sites where forage standing crop of grass was equal or higher in the paired point compared to inside the grazing exclosure. Herbivores did not graze sites that were < 562 kg/ha of grass standing crop. The reduced data set (productive sites) included all the sampling points where grass standing crop was > 562 kg/ha.

Table 5 includes average rainfall, percent sand, and percent use for the months of August to November by site (Table 6) and by year (Table 7). Appendix A lists the average rainfall, percent sand, and percent use for the months of August to November individually by site per

Table 6. Average rainfall, soil, number of sampling points used, and grazing use by site from 2012 - 2019 in south Texas. Locations are represented as: 1 - San Antonio Viejo Site 1, 2 - San Antonio Viejo Site 2, 3 - San Antonio Viejo Site 3, 4 - Buena Vista, 5 - Santa Rosa, 6 - El Sauz.

<u>Site</u>	<u>Year</u>	<u>August</u> Rainfall	<u>September</u> Rainfall (mm)	<u>October</u> Rainfall (mm)	November Rainfall (mm)	<u>Sand</u> Percentage	<u>Number of</u> Exclosures	Percent Exclosures	Percent USE
		<u>(mm)</u>	<u></u>		<u>,,,,,,,</u>		Used	Used	
1	2012-2019	33	94	41	41	93%	22 ± 2	$44 \pm 4\%$	$41 \pm 3\%$
2	2012-2019	33	106	39	41	91%	19 ± 3	$38 \pm 4\%$	$57 \pm 3\%$
3	2012-2019	33	99	42	38	78%	26 ± 1	$51 \pm 2\%$	$46 \pm 2\%$
4	2012-2019	42	148	29	42	93%	25 ± 3	$50 \pm 4\%$	$57 \pm 2\%$
5	2012-2019	61	150	49	60	94%	25 ± 2	$49 \pm 3\%$	$49 \pm 4\%$
6	2012-2019	38	141	79	62	95%	28 ± 1	$55 \pm 2\%$	$53 \pm 3\%$

Table 7. Averages rainfall, soil, number of sampling points used and grazing use by year from 2012 - 2019 in south Texas. Locations are represented as: 1 - San Antonio Viejo Site 1, 2 - San Antonio Viejo Site 2, 3 - San Antonio Viejo Site 3, 4 - Buena Vista, 5 - Santa Rosa, 6 - El Sauz.

<u>Site</u>	<u>Year</u>	<u>August</u> <u>Rainfall</u> (mm)	<u>September</u> <u>Rainfall</u> (mm)	October Rainfall (mm)	November Rainfall (mm)	<u>Sand</u> Percentage	Number of Exclosures Used	Percent Exclosures Used	Percent USE
1-6	2012	20	55	8	23	92%	14 ± 2	27 ± 3%	81 ± 1%
1-6	2013	24	167	13	45	90%	14 ± 3	28 ± 4%	57 ± 1%
1-6	2014	59	196	30	111	92%	28 ± 2	55 ± 2%	44 ± 3%
1-6	2015	24	84	171	27	90%	29 ± 2	59 ± 2%	39 ± 3%
1-6	2016	113	57	15	46	90%	35 ± 1	70 ± 1%	52 ± 1%
1-6	2017	56	32	46	29	91%	20 ± 2	41 ± 3%	59 ± 2%
1-6	2018	14	291	64	31	90%	26 ± 2	52 ± 3%	39 ± 2%
1-6	2019	10	102	26	67	91%	25 ± 1	51 ± 2%	32 ± 3%

year. The percent of sampling points included in the reduced data set ranged from 38% to 55%. Combining all locations by year 27% to 70% of the sampling points were included in the reduced data set. During the drought of 2012 grazing use was $81 \pm 1\%$ throughout all study sites. Only 27 \pm 3% of the sampling sites in 2012 at all the ranches were considered grazeable for herbivores. Rainfall was the driving factor that affected grazeable areas on these ranches.

When using the reduced data August rainfall ($\hat{\beta} = -0.00723, 85\%$ CI: -0.01171 to -0.00276; standardized $\hat{\beta} = -0.20226$, standardized CIs: -0.32733 to -0.07719), September rainfall $(\hat{\beta} = 0.00203, 85\% \text{ CI: } 0.00014966 \text{ to } 0.0039; \text{ standardized } \hat{\beta} = 0.13586, \text{ standardized CIs: } \hat{\beta} = 0.13586, \text{$ 0.01004 to 0.26167), sand ($\hat{\beta} = 0.21018$, 85% CI: 0.18013 to 0.24023; standardized $\hat{\beta} = 0.8532$, standardized CI: 0.73122 to 0.97518), and use² ($\hat{\beta} = -0.00038935$, 85% CI: -0.00073852 to -0.00004017; standardized $\hat{\beta} = -0.56519$, standardized CIs: -1.07206 to -0.05831) were the influential variables affecting total forb standing crop, with an R² of 0.7472 (Table 8). August rainfall ($\hat{\beta} = -0.00643$, 85% CI: -0.01211 to -0.0007561; standardized $\hat{\beta} = -0.16351$, standardized CIs: -0.3078 to -0.01922), September rainfall ($\hat{\beta} = 0.00457, 85\%$ CI: 0.00219 to 0.00695; standardized $\hat{\beta} = 0.27894$, standardized CI: 0.13379 to 0.42409), sand ($\hat{\beta} = 0.18904$, 85% CI: 0.15091 to 0.22716; standardized $\hat{\beta} = 0.69774$, standardized CI: 0.55701 to 0.83846), and use² $(\hat{\beta} = -0.00049444, 85\% \text{ CI: } -0.00093748 \text{ to } -0.0000514; \text{ standardized } \hat{\beta} = -0.65261, \text{ standardized}$ CIs: -1.23737 to -0.06784) were the influential variables affecting preferred forb standing crop with an R² of 0.6635. For total forbs an important interaction was sand x August rainfall (P=0.0134). For preferred forbs the only important interaction was use x September rainflall (*P*=0.0929).

With 85% grazing use and 415 mm of September rainfall produced a peak total forb standing crop of 356 kg/ha (Figure 14). With 45% grazing use and 0 mm of August rainfall produced a peak total forb standing crop of 289 kg/ha (Figure 15). With over 90% grazing use and 550 mm of September rainfall produced a peak preferred forb standing crop of 504 kg/ha (Figure 16). With 35% grazing use and 0 mm of August rainfall produced a peak preferred forb standing crop of 154 kg/ha (Figure 17). With 55% grazing use and 95% sand in the soil produced

Rank	Response Variable	Covariates	β Estimate	Standardized β	AIC	Δ ΑΙΟ	R ²	85% Confid	lence Limits	Standardi Confidence	zed 85% Intervals	Model Weight
1	Total Forbs				-18.7944	0.1353	0.7472					0.173369
		August rainfall	-0.00723	-0.20226				-0.01171	-0.00276	-0.32733	-0.07719	
		September rainfall	0.00203	0.13586				0.00014966	0.0039	0.01004	0.26167	
		Sand	0.21018	0.8532				0.18013	0.24023	0.73122	0.97518	
		use	0.03182	0.43862				-0.00435	0.06799	-0.06003	0.93727	
		use ²	-0.00038935	-0.56519				-0.00073852	-0.00004017	-1.07206	-0.05831	
2	Total Forbs				-18.1626	0.7671	0.7216					0.126409
		August rainfall	-0.00591	-0.1652				-0.01022	-0.0016	-0.28577	0.04464	
		September rainfall	0.00297	0.19922				0.00118	0.00476	0.07893	0.3195	
		Sand	0.19711	0.80013				0.16789	0.22633	0.68151	0.91875	
3	Total Forbs				-18.0115	0.9182	0.7321					0.117211
		August rainfall	-0.00859	-0.2401				-0.0295	-0.00422	-0.36219	-0.11802	
		Sand	0.21778	0.88406				0.18807	0.24749	0.76346	1.00465	
		use	0.04147	0.57164				0.00582	0.07711	0.08027	1.06301	
		use ²	-0.00050317	-0.73042				-0.00084169	-0.00016465	-1.22182	-0.23901	
1	Preferred Forbs				4.0612	0.8789	0.6635					0.160572
		August rainfall	-0.00643	-0.16351				-0.01211	-0.0007561	-0.3078	-0.01922	
		September rainfall	0.00457	0.27894				0.00219	0.00695	0.13379	0.42409	
		Sand	0.18904	0.69774				0.15091	0.22716	0.55701	0.83846	
		use	0.03118	0.39085				-0.01471	0.07708	-0.18442	0.96613	
		use ²	-0.00049444	-0.65261				-0.00093748	0.0000514	-1.23737	-0.06784	
2	Forbs				4.5266	1.3443	0.6307					0.127236
		September rainfall	0.00575	0.35043				0.00347	0.00802	0.21181	0.48905	
		Sand	0.17303	0.63864				0.013595	0.2101	0.5018	0.77548	
		use	-0.01934	-0.24238				-0.03044	-0.00824	-0.38151	-0.10326	
3	Preferred Forbs				5.0282	1.8459	0.6421					0.099012
		August rainfall	-0.00435	-0.11062				-0.00981	0.00111	-0.24948	0.02823	
		September rainfall	0.00538	0.32784				0.00306	0.00769	0.18685	0.46883	

Table 8. Variables affecting total, preferred, and non preferred forbs standing crop in a eight year on the East Foundation ranch study sites from 2012-2019 for the reduced data set.

Table 8. continued

Rank	Response Variable	Covariates	β Estimate	Standardized B	AIC	ΔΑΙΟ	R ²	85% Confi	dence Limits	Standardi Confidence	ized 85% e Intervals	Model Weight
		Sand	0.17712	0.65376				0.13983	0.21441	0.51611	0.79141	
		use	-0.01858	-0.23282				-0.02968	-0.00747	-0.37194	-0.09369	
4	Preferred Forbs				5.1175	1.9352	0.6414					0.094689
		September rainfall	0.00533	0.32503				0.003	0.00766	0.18294	0.46713	
		Sand	0.17966	0.66313				0.1417	0.21762	0.52303	0.80323	
		use	0.01358	0.17024				-0.03046	0.05763	-0.38183	0.72231	
		use ²	-0.00032954	-0.43496				-0.0007563	0.00009722	-0.99824	0.12832	
1	Non- Preferred Forbs				13.0555	0	0.6214					0.218814
		Sand	0.24034	0.78829				0.199984	0.28083	0.65547	0.9211	
2	Non- Preferred Forbs				14.3346	1.2791	0.627					0.115431
		August rainfall	-0.0035	-0.07573				-0.0093	0.0026	-0.21014	0.05868	
		Sand	0.24326	0.79788				0.20228	0.28424	0.66347	0.93229	
3	Non- Preferred Forbs				14.5318	1.4763	0.6255					0.104593
		September rainfall	-0.00119	-0.06447				-0.00367	0.00129	-0.19884	0.06991	
		Sand	0.24244	0.7952				0.20147	0.28341	0.66082	0.92958	
4	Non- Preferred Forbs				14.8976	1.8421	0.6226					0.08711
		Sand	0.23886	0.78344				0.19758	0.28013	0.64806	0.91881	
		use	0.0032	0.03559				-0.00896	0.01535	-0.09978	0.17097	
5	Non- Preferred Forbs				17.8834	4.8279	0.6456					0.019575
		August rainfall	-0.00598	-0.13517				-0.01254	0.00057124	-0.28324	0.01291	
		September rainfall	-0.00211	-0.11413				-0.00485	0.00064271	-0.26309	0.03483	
		Sand	0.25495	0.83622				0.21092	0.29898	0.6918	0.98064	
		use	0.04248	0.47318				-0.01052	0.09549	-0.11719	1.06355	
		use ²	-0.00039495	-0.46324				-0.0009066	0.0001167	-1.06335	0.13687	

a peak total forb standing crop of 362 kg/ha (Figure 18). With 40% grazing use and 95% sand produced a peak preferred forb standing crop of 179 kg/ha (Figure 19). Peak total forb standing crop of 456 kg/ha occurred when September rainfall was 285 mm and having 95% sand in the soil (Figure 20). Peak total forb standing crop of 347 kg/ha when August rainfall was 0 mm and 90% sand (Figure 21). Peak preferred forb standing crop of 371 kg/ha occurred when September rainfall was 330 mm and 90% sand (Figure 22). Peak preferred forb standing crop of 157 kg/ha when August rainfall was 0 mm and 90% sand (Figure 23). Data also showed that by having no August rainfall and 90% sand maximized total (347 kg/ha) and preferred (157 kg/ha) forbs standing crop when moisture availability was abundant in September. The only variable that influenced non-preferred forbs was the sand content (90%) ($\hat{\beta} = 0.25495$, 85% CI: 0.21092 to 0.29898; standardized $\hat{\beta} = 0.78829$, standardized CI: 0.65547 to 0.9211) with an R² of 0.6214.

Figure 14. Peak total forb standing crop as affected by September rainfall and grazing use using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean August rainfall (\overline{AR}), grazing use (USE), September rainfall (SR), and mean sand (\overline{S}).

Figure 15. Peak total forb standing crop as affected by August rainfall and grazing use using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use (USE)², mean September rainfall (\overline{SR}), grazing use (USE), August rainfall (AR), and the mean sand (\overline{S}).

Figure 16. Peak preferred forb standing crop as affected by September rainfall and grazing use using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean August rainfall (\overline{AR}), grazing use (USE), September rainfall (SR), and mean sand (\overline{S}).

Figure 17. Peak preferred forb standing crop as affected by August rainfall and grazing use using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}) , grazing use (USE), August rainfall (AR), and the mean sand (\overline{S}) .

Figure 18. Peak total forb standing crop as affected by grazing use and sand percentage using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}) , grazing use (USE), mean August rainfall (\overline{AR}) , and sand (S).

Figure 19. Peak preferred forb standing crop as affected by grazing use and sand percentage using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}) , grazing use (USE), mean August rainfall (\overline{AR}) , and sand (S).

Figure 20. Peak total forb standing crop as affected by September rainfall and percent sand using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: mean grazing use $(\overline{USE})^2$, mean August rainfall (\overline{AR}) , mean grazing use (\overline{USE}) , September rainfall (SR), and sand (S).

Figure 21. Peak total forb standing crop as affected by August rainfall and percent sand using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: mean grazing use $(\overline{USE})^2$, August rainfall (AR), mean grazing use (\overline{USE}), September rainfall (\overline{SR}), and sand (S).

Figure 22. Peak preferred forb standing crop as affected by September rainfall and percent sand using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: mean grazing use $(\overline{USE})^2$, mean August rainfall (\overline{AR}) , mean grazing use (\overline{USE}) , September rainfall (SR), and sand (S).

Figure 23. Peak preferred forb standing crop as affected by August rainfall and percent sand using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: mean grazing use $(\overline{USE})^2$, August rainfall (AR), mean grazing use (\overline{USE}) , September rainfall (\overline{SR}) , and sand (S).

Plant Species Richness (Complete data set)

During autumn 2012 – spring 2019, I identified a total of 221 forb species (Appendices A & C) and 74 grass/grass-like species (Appendix B). Preferred forbs consisted of 192 species (Appendix A) and non-preferred consisted of 29 species (Appendix C).

September rainfall ($\hat{\beta} = 0.00152$, 85% CI: 0.000516 to 0.00253; standardized $\hat{\beta} = 0.27468$, standardized CI: 0.09325 to 0.4561) and sand ($\hat{\beta} = 0.04243$, 85% CI: 0.02577 to 0.05909; standardized $\hat{\beta} = 0.46208$, standardized CI = 0.28065 to 0.6435) were the most influential variables affecting plant species richness with the complete data set with an R² of 0.3192. (Table 9).

With 65% grazing use and 230 mm of September rainfall produced a peak plant species richness of 2 species per $0.25m^2$ (Figure 24). With 50% grazing use and 0 mm of August rainfall produced a peak plant species richness of 2 species per $0.25m^2$ (Figure 25). With 15% grazing use and 85% sand in the soil produced a peak plant species richness of 11 species per $0.25m^2$ (Figure 26). The peak plant species richness, 10 species per $0.25m^2$, occurred when September rainfall was 540 mm and 95% sand (Figure 27). With no rainfall in August, 95% sand, and abundant September rainfall 8 species per $0.25m^2$ occurred (Figure 28).

Rank	Response Variable	Covariates	β Estimate	Standardized β	AIC	Δ ΑΙΟ	R ²	85% Confid	lence Limits	Standardi Confidence	zed 85% Intervals	Model Weight
1	Plant Species Richness				-72.3532	0	0.3192					0.237135
		September rainfall	0.00152	0.27468				0.00051647	0.00253	0.09325	0.4561	
		Sand	0.04243	0.46208				0.02577	0.05909	0.28065	0.6435	
2	Plant Species Richness				-71.5913	0.7619	0.3366					0.162013
		August rainfall	-0.00181	-0.13607				-0.00428	0.00066296	-0.13607	-0.32201	
		September rainfall	0.00135	0.24347				0.00031745	0.00238	0.05732	0.42961	
		Sand	0.04414	0.4807				0.02734	0.06094	0.29772	0.66367	
3	Plant Species Richness				-70.5272	1.826	0.3217					0.095167
		September rainfall	0.001519	0.28682				0.0005443	0.00263	0.09827	0.47536	
		Sand	0.04255	0.46344				0.02572	0.05938	0.28015	0.64672	
		use	0.00103	0.05115				-0.00274	0.00479	-0.13633	0.23863	
4	Plant Species Richness				-68.0064	4.3468	0.3423					0.026984
		August rainfall	-0.00203	-0.15231				-0.00462	0.00057378	-0.34778	0.04316	
		September rainfall	0.00142	0.25576				0.00033993	0.00249	0.06138	0.45015	
		Sand	0.04504	0.49049				0.02766	0.06242	0.30121	0.67977	
		use	0.00224	0.11139				-0.00329	0.00776	-0.16412	0.38691	
		use ²	-0.00001856	-0.06476				-0.00009632	0.0000592	-0.3361	0.20658	

Table 9. Variables affecting plant species richness in the study sites on the East ranches from 2012-2019 for the complete data set.

Figure 24. Peak plant species richness as affected by September rainfall and grazing use using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean August rainfall (\overline{AR}) , grazing use (USE), September rainfall (SR), and mean sand (\overline{S}) .

Figure 25. Peak plant species richness as affected by August rainfall and grazing use using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}), grazing use (USE), August rainfall (AR), and the mean sand (\overline{S}).

Figure 26. Peak plant species richness as affected by grazing use and sand percentage using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}) , grazing use (USE), mean August rainfall (\overline{AR}) , and sand (S).

Figure 27. Peak plant species richness as affected by September rainfall and percent sand using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(\overline{USE})^2$, mean August rainfall (\overline{AR}) , mean grazing use (\overline{USE}) , September rainfall (SR), and sand (S).

Figure 28. Peak plant species richness as affected by August rainfall and percent sand using the complete data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(\overline{USE})^2$, August rainfall (AR), mean grazing use (\overline{USE}), mean September rainfall (\overline{SR}), and sand (S).

August rainfall ($\hat{\beta}$ = -0.00386, 85% CI: -0.00584 to -0.00189; standardized $\hat{\beta}$ = -0.31544, standardized CI: -0.4769 to -0.15398), sand ($\hat{\beta}$ = 0.0615, 85% CI: 0.0485 to 0.0754; standardized $\hat{\beta}$ = 0.73437, standardized CI: 0.57488 to 0.89385) use ($\hat{\beta}$ = 0.01958, 85% CI: 0.00344 to 0.03572; standardized $\hat{\beta}$ = 0.78814, standardized CI: 0.13831 to 1.43798), and use² ($\hat{\beta}$ = -0.00020324, 85% CI: -0.0003565 to -0.00004993; standardized $\hat{\beta}$ = -0.86155, standardized CI: -1.51143 to -0.21168) influenced plant species richness with an R² of 0.531 (Table 10). The next model I analyzed included August rainfall ($\hat{\beta}$ = -0.00324, 85% CI: -0.00517 to -0.00131; standardized $\hat{\beta}$ = -0.2648, standardized CI: -0.42228 to -0.10732) and sand ($\hat{\beta}$ = 0.05744, 85% CI: 0.04415 to 0.07072; standardized $\hat{\beta}$ = 0.68086, standardized CI: 0.52338 to 0.83833) influenced plant species richness and had a R² of 0.488.

With 60% grazing use and 235 mm of September rainfall produced a peak plant species richness of 8 species per 0.25m² (Figure 29). With 50% grazing use and 0 mm of August rainfall produced a peak plant species richness of 8 species per 0.25m² (Figure 30). With 65% grazing use and over 95% sand in the soil produced a peak plant species richness of 9 species per 0.25m² (Figure 31). The peak plant species richness, 8 species per 0.25m², occurred when September rainfall was 230 mm and 95% sand (Figure 32). With no rainfall in August, 95% sand, and abundant September rainfall 8 species per 0.25m² occurred (Figure 33). August rainfall and sand were the factors that influenced plant species richness in productive sites. Grazing use was a significant factor in the response models that I analyzed.

40

Rank	Response Variable	Covariates	β Estimate	Standardized β	AIC	Δ ΑΙΟ	R ²	85% Confid	ence Limits	Standardized 85% Confidence Intervals		Model Weight
1	Plant Species Richness				- 94.0575	0	0.531					0.222256
		August rainfall	-0.00386	-0.31544				-0.00584	-0.00189	-0.4769	-0.15398	
		Sand	0.06195	0.73437				0.0485	0.0754	0.57488	0.89385	
		Use	0.01958	0.78814				0.00344	0.03572	0.13831	1.43798	
		Use ²	-0.00020324	-0.86155				-0.0003565	-0.00004993	-1.51143	-0.21168	
2	Plant Species Richness				- 93.8069	0.2506	0.488					0.196082
		August rainfall	-0.00324	-0.2648				-0.00517	-0.00131	-0.42228	-0.10732	
		Sand	0.05744	0.68086				0.04415	0.07072	0.52338	0.83833	
3	Plant Species Richness				- 92.5638	1.4937	0.496					0.105317601
		August rainfall	-0.00299	-0.24404				-0.00498	-0.001	-0.40624	-0.08184	
		September rainfall	0.00047155	0.09237				0.00035462	0.0013	-0.06946	0.25419	
		Sand	0.05638	0.66833				0.04292	0.06984	0.50874	0.82791	
4	Plant Species Richness				- 92.0575	1.9535	0.532					0.083687
		August rainfall	-0.00378	-0.30888				-0.00587	-0.0017	-0.47906	-0.13869	
		September rainfall	0.00012026	0.02356				-0.00075377	0.00099429	-0.14765	0.19476	
		Sand	0.0615	0.72902				0.0475	0.0755	0.56303	0.895	
		Use	0.01901	0.76508				0.00215	0.03586	0.08655	1.4436	
		Use ²	0.00011096	-0.8329				-0.00035919	-0.00003378	-1.52262	-0.14319	

Table 10. Variables affecting plant species richness in the study sites on the East ranches from 2012-2019 for the reduced data set.

Figure 29. Peak plant species richness as affected by September rainfall and grazing use using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean August rainfall (\overline{AR}), grazing use (USE), September rainfall (SR), and mean sand (\overline{S}).

Figure 30. Peak plant species richness as affected by August rainfall and grazing use using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use (USE)², mean September rainfall (\overline{SR}), grazing use (USE), August rainfall (AR), and the mean sand (\overline{S}).

Figure 31. Peak plant species richness as affected by grazing use and sand percentage using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(USE)^2$, mean September rainfall (\overline{SR}), grazing use (USE), mean August rainfall (\overline{AR}), and sand (S).

Figure 32. Peak plant species richness as affected by September rainfall and percent sand using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(\overline{USE})^2$, mean August rainfall (\overline{AR}) , mean grazing use (\overline{USE}) , September rainfall (SR), and sand (S).

Figure 33. Peak plant species richness as affected by August rainfall and percent sand using the reduced data set from all East ranches study sites from 2012-2019. The model above to generate the graph included variables such as: grazing use $(\overline{USE})^2$, August rainfall (AR), mean grazing use (\overline{USE}), mean September rainfall (\overline{SR}), and sand (S).

Discussion

In this study, grazing had little effect on forb standing crop of preferred forbs for whitetailed deer. Even when grazing use was included in the best models, it showed a very limited effect on deer forbs. Abiotic factors were much more an influence on forb standing crop. There are several possible reasons for this result, such as overgrazing and variable rainfall in the study area. In a non-equilibrium environment, as in south Texas, stochastic abiotic influencers had a larger role on plant productivity than herbivores (Illius and O'Connor 1999, Derry and Boone 2009, Ellis and Swift 1988). Additionally, in 2011 and 2012 the worst drought since the 1950's occurred in south Texas, and in 2013 considerable rain did not occur until September. A legacy effect from cattle and wildlife overgrazing and drought more likely masked the effect of grazing utilization in this area. In drought-prone environments and overgrazed rangelands, 8 years may be a short period of time to probe the real effect of cattle grazing on deer preferred forbs. Other researchers have found that overgrazed rangelands may take a decade or more to recover especially in semi-arid environments with variable rainfall (Ruppert et al. 2015, Smith et al. 2007, Vetter 2009, Ryerson and Parmenter 2001). It may take many years for grazing herbivores to actually have an impact on forb standing crop for deer.

Using the complete data set, abiotic factors, such as soil and rainfall, were the most influential on forb standing crop as stated by Milchunas et al (1994). I found that total forb standing crop was primarily affected by September rainfall and sand percentages with a maximum total forb standing crop of 666 kg/ha. One interaction affecting forage standing crop of total forbs in the complete data set was use x sand which means that forb standing crop depended on percent change of use and how much sand was found in the soil. Just as reported by Jones et al (2016) where multiple factors were the drivers for forb production. Production of

45

forbs was driven by with almost no rainfall in August and having a high September rainfall increased the amount of forb standing crop. My explanation for these results is that by having a low amount of August rainfall grass cover would be low, allowing a very high forb standing crop in September when forb outcompete grasses. The peak species richness, 10 species per 0.25m², occurred when September rainfall was plentiful (540 mm) and 95% sand. Plant species richness was most influenced by September rainfall and sand percentages just as I found in the total forb standing crop. Other studies show the same results of environmental factors (rainfall and soil) affecting plant species richness as well (Xia et al. 2010, Grace et al. 2000, Robertson et al. 2010).

Herbivores do not graze all the areas of the rangeland uniformly (Bailey and Brown 2011, Fuhlendorf and Engle 2001). Herbivores also avoid areas of low to no forage availability, high brush density, rock cover, high surface slope, water and unpalatable forage species can affect how the area is grazed (Hanselka et al. 2009, Hohlt et al. 2009). In the case of this study, one-third to over half of the sampling sites were not grazed based on low grass biomass. Some areas of the ranches could be left ungrazed from water distribution, pasture deferment, and road proximity. The minimum value of grass standing crop in the sampling sites grazed by herbivores was 562 kg/ha. The implication of this result is very important for the calculation of correct stocking rate of cattle as well as the management of population densities of important wildlife species, such as nilgai (Boselaphus tragocamelus), and sites of productivity not being grazed by cattle should not be considered in the calculation of grazeable areas when estimating correct stocking rate as recommended by Ortega and Bryant (2005), Fulbright and Ortega (2013), and Hohlt et al. (2009). Grazable area should be considered when calculating correct stocking rate when based upon total area and actual area that cattle can graze, since incorrect estimates of standing crop of the entire area can result to the overgrazing and degradation of the rangeland

(Fulbright and Ortega 2006). I determined the areas of the site that were being used from averages of grass standing crop inside and outside of the exclosure by site and by year, as rainfall increased a larger number of areas were grazed by herbivores. When looking at averages by site, sampling points used (areas) ranged from 38 to 55%.

Using the reduced data set for total and preferred forbs shown different influential factors in the model. Rainfall and sand were the most important factors, but use was also selected in the best model to predict the forb standing crop. An interaction affecting total forb standing crop in the reduced data set included sand x August rainfall where forb standing crop depended on sand in the soil and amount of rainfall in September. Another interaction occurred affecting preferred forb standing crop in the reduced data set included September rainfall and use where forb standing crop depended on percent change in use and amount of rainfall in September. Although grazing (use) had an influence in the model, it was not a major contributor compared to rainfall and soil. Similarly, Gann et al (2019), mentioned that with variable rainfall in an arid environment, rainfall was much more influential than herbivory.

Plant species richness response was different using the complete data set compared with the reduced data set. Grazing (use) was selected in the model as a factor that influenced species richness, with the reduced data set even when the major affecting factors were rainfall and sand. In the complete data set only rainfall and sand were the most influential factors. The plant species richness value was higher in the complete data set, since areas where grazing herbivores could not venture may have other species that may be less resistant to herbivory. Plant species richness may not be impacted directly by grazing use from the variable rainfall in south Texas just as other studies have shown in semi-arid rangelands (Milchunas et al 1988, Osem et al 2002, Zhang et al 2017, Walker and Wilson 2002).

47

Conclusion

The legacy effect from overgrazing by cattle and wildlife and the worst drought since the 1950's, an eight-year study may not be long enough to see herbivory impact on forbs preferred by deer. The grazing optimization hypothesis may work on landscapes in climax conditions but not in sub-climax rangelands. Even when grazing was selected as a factor when analyzing only the productive sites (reduced data set) rainfall and soils more important and probably masked the effect of grazing probably due to the initial condition of the landscape and the drought. It is clear however that herbivores avoided less productive sites and therefore the implication of this finding in the estimation of grazeable area to calculate correct stocking rate is a very important of my study to grazing management.

References

- Abdel-Magid, A. H., Schuman, G. E., and Hart, R. H. 1987. Soil Bulk Density and Water Infiltration as Affected by Grazing Systems. *Journal of Range Management* 40.4: 307-09.
- Armstrong, W. E. 1997. White-tailed deer Competition with Goats, Sheep, Cattle, and Exotic Wildlife. Texas Parks and Wildlife Department. *Wildlife Management Handbook* Pp. 1-4.
- Arnold, T. W. 2010. Uninformative Parameters and Model Selection Using Akaike'sInformation Criterion. *Journal of Wildlife Management* 74(6):1175–1178. DOI: 10.2193/2009-367.
- Bailey, D. W., and Brown, J. R. 2011. Rotational Grazing Systems and Livestock Grazing Behavior in Shrub-Dominated Semi-Arid and Arid Rangelands. *Rangeland Ecology & Management* 64, 1–9.
- Bestelmeyer, B. T., Brown, J. R., Havstad, K. M., Alexander, R., Chavez, G., and Herrick, J. E. (2003). Development and Use of State-and-Transition Models for Rangelands. *Journal of Range Management* 56.2: 114-28.
- Bonser, S. P., and Reader, R. J. 1995. Plant Competition and Herbivory in Relation to Vegetation Biomass. *Ecology* 76.7: 2176-183.
- Cohen, W. E., Drawe, D. L., Bryant, F. C., and Bradley, L. C. 1989. Observations on Whitetailed deer and Habitat Response to Livestock Grazing in South Texas. *Journal of Range Management* 42.5: 361-65.
- Cooper, S. M., Perotto-Baldivieso, H. L., Owens, M. K., Meek, M. G., and Figueroa-Pagán, M. 2008. Distribution and interaction of white-tailed deer and cattle in a semi-arid grazing system. *Agriculture, Ecosystems & Environment* 127.1-2: 85-92.
- Gann, W.J., Fulbright, T. E., Hewitt, D. G., DeYoung, C. A., Grahmann, E. D., Wester, D. B., Felts, B. L., Phillips, L. M., Gage, R. T., and Draeger, D. A. 2019. Vegetation Response to White-Tailed Deer Density and Enhanced Nutrition. Pages 35-44 in DeYoung, C. A., Fulbright, T. E., Hewitt, D. G., Wester, D. B., and Draeger, D. A. Linking White-tailed Deer Density, Nutrition, and Vegetation in a Stochastic Environment. *Wildlife Monographs* 203: 1 63.
- Derry, J. F., and Boone, R. B. 2009. Grazing systems are a results of equilibrium and nonequilibrium dynamics. *Journal of Arid Environments* 74, 307-309.
- Drawe, D. L., and Box, T. W. 1968. Forage Ratings for Deer and Cattle on the Welder Wildlife Refuge. *Journal of Range Management* 21, 225.

- East Foundation. 2007. About the Foundation. Retrieved from <u>https://www.eastfoundation.net/</u>. Accessed 7 April 2020.
- Ellis, J. E., and Swift, D. M. 1988. Stability of African pastoral ecosystems: Alternate paradigms and implications for development. *Journal of Range Management* 41(6), 450-459.
- Fuhlendorf, S. D., and Engle, D. M. 2001. Restoring Heterogeneity on Rangelands: Ecosystem Management Based on Evolutionary Grazing Patterns. *BioScience* 51, 625.
- Fulbright, T.E., Diamond, D. D., Rappole, J., and Norwine, J. 1990. The Coastal Sand Plain of Southern Texas. *Rangelands* 12, 337–340.
- Fulbright, T. E., and Ortega-S, J. A. 2013. White-tailed Deer Habitat: Ecology and Management on Rangelands. 2nd ed. College Station: Texas A & M University Press. Print.
- Fulbright, T. E., and Ortega-S, J. A. 2006. Livestock Grazing and Wildlife Management in North America. Sécheresse Montrouge, 17(1-2): 1-6.
- Gallina, S. 1993. White-tailed deer and Cattle Diets at La Michilia, Durango, Mexico. *Journal of Range Management* 46, 487.
- Grace, J. B., Allain, L., Charles. 2000. Factors Associated with Plant Species Richness in a coastal tall-grass prairie. *Journal of Vegetation Science* 11: 443-452.
- Green, S., and Brazee, B. 2012. Harvest Efficiency in Prescribed Grazing. USDA Natural Resource Conservation Service. Pp. 1-7.
- Hanselka, C. W., Lyons, R., Moseley, M. 2009. Grazing Land Stewardship: A Manual for Texas Landowners. Texas Agrilife Extension Service B-6221: 1-148.
- Harrison, K. A., and Bardgett, R. D. 2010. Influence of Plant Species and Soil Conditions on Plant-soil Feedback in Mixed Grassland Communities. *Journal of Ecology* 98.2: 384-95.
- Hilbert, D. W., Swift, D. M., Detling, J. K., and Dyer, M. I. 1981. Relative growth rates and the grazing optimization hypothesis. *Oecologia* 51.1: 14-18.
- Hines, Stacy. 2016. Cattle, Deer, and Nilgai Interactions. (Doctoral dissertation). Texas A&M University-Kingsville, Kingsville, Texas.
- Hohlt, J. C., Lyons, R. K., Hanselka, C. W., and McKown, D. 2009. Estimating Grazeable Acreage for Cattle. AgriLife Extension Bulletin B-6222, The Texas A&M System. Pp. 1-6.

- Holechek, J. L., Valdez, P., Schemnitz, S. D., Pieper, R. D., and Davis, C. A. 1982. Manipulation of Grazing to Improve or Maintain Wildlife Habitat. *Wildlife Society Bulletin* 10.3: 204-210.
- Illius, A. W., and O'Connor, T. G. 1999. On the Relevance of Nonequilibrium Concepts to Arid and Semiarid Grazing Systems. *Ecological Applications*, 9(3): 798-813.
- Inglis, J. M. 1964. A History of Vegetation on the Rio Grande Plain. Austin, TX: Texas Parks and Wildlife Department. Print.
- Jones, S. K., Collins, S. L., Blair, J. M., Smith, M. D., and Knapp, A. K. 2016. Altered Rainfall Patterns Increase Forb Abundance and Richness in Native Tallgrass Prairie. *Scientific Reports* 6: 20120. DOI: 10.1038/srep20120.
- Leopold, A., Brooks, A., and Jahn, L. R. 1986. Game management. Madison, WI: University of Wisconsin Press. Print.
- Lyons, R. K., and Machen, R. V. 2001. Stocking Rate: The Key Management Decision. Texas Agricultural Extension Service. Pp. 1-6.
- Milchunas, D. G., Forwood, J. R., and Lauenroth W. K. 1994. Productivity of Long-term Grazing Treatments in Response to Seasonal Precipitation. *Journal of Range Management* 47: 133-139.
- Milchunas, D. G., Sala, O. E., and Lauenroth, W. K. 1988. A Generalized Model of the Effects of Grazing by Large Herbivores on Grassland Community Structure. *The American Naturalist* 132.1: 87-106.
- Montalvo, A., Snelgrove, T., Riojas, G., Schofield, L., and Campbell, T. 2020. Cattle Ranching in the "Wild Horse Desert" – Stocking Rate, Rainfall, and Forage Responses. *Rangelands* 47: 1-12.
- Oba, G., Vetaas, O. R., and Stenseth, N. C. 2001. Relationships between Biomass and Plant Species Richness in Arid-Zone Grazing Lands. *Journal of Applied Ecology* 38.4: 836-45.
- Ortega, I. M., Soltero-Gardea, S., Drawe, D. L., and Bryant, F. C. 1997. Evaluating Grazing Strategies for Cattle: Nutrition of Cattle and Deer. *Journal of Range Management* 50.6: 631-37.
- Ortega-S, J.A., and Bryant F. C. 2005. Cattle Management to Enhance Wildlife Habitat in South Texas. *Management Bulletin of the Caesar Kleberg Wildlife Institute* 6: 1-11.
- Osem, Y., Perevolostsky, A., and Kigel, J. 2002. Grazing Effect on Diversity of Annual Plant Communities in a Semi-Arid Rangeland: Interactions with Small-scale Spatial and Temporal Variation in Primary Productivity. *Journal of Ecology* 90, 936-946.

- Patton, B. D., Dong, X., Nyren, P. E., and Nyren, A. 2007. Effects of Grazing Intensity, Precipitation, and Temperature on Forage Production. *Rangeland Ecology & Management* 60.6: 656-65.
- Ratliff, R.D., and Westfall, S.E. 1988. Biomass trends in a Nebraska sedge meadow, Sierra national forest, California. *Aquatic Botany* 30, 109–124.
- Rauzi, F., and Hanson, C. L. 1966. Water Intake and Runoff as Affected by Intensity of Grazing. *Journal of Range Management* 19.6: 351-56.
- Robertson, T. R., Zak, J. C., Tissue, D. T. 2010. Precipitation Magnitude and Timing Differentially affect Species Richness and Plant Density in the Sotol Grassland of the Chihuahuan Desert. *Oecologia* 162: 185-197.
- Ruppert, J. C., Harmoney, K., Henkin, Z., Snyman, H. A., Sternberg, M., Willms, W., and Linstädter, A. 2015. Quantifying Drylands' Drought Resistance and Recovery: The Importance of Drought Intensity, Dominant Life History and Grazing Regime. *Global Change Biology* 21, 1258-1270, doi: 10.1111/gcb.12777.
- Ryerson, D. E., and Parmenter, R. R. 2001. Vegetation change following removal of keystone herbivores from desert grasslands in New Mexico. *Journal of Vegetation Science* 12: 167-180.
- Smith, R.S., and Rushton, S.P. 1994. The Effects of Grazing Management on the Vegetation of Mesotrophic (Meadow) Grassland in Northern England. *The Journal of Applied Ecology* 31, 13.
- Smith, M. S., McKeon, G. M., Watson, I. W., Henry, B. K., Stone, G. S., Hall, W. B., and Howden, S. M. 2007. Learning from Episodes of Degradation and Recovery in Variable Australian Rangelands. *PNAS*, 104(52) 20690-20695.
- Thill, R.E., and Martin, A. 1989. Deer and Cattle Diets on Heavily Grazed Pine-Bluestem Range. *The Journal of Wildlife Management* 53, 540.
- Tracy, B.F., and Faulkner, D.B. 2006. Pasture and Cattle Responses in Rotationally Stocked Grazing Systems Sown with Differing Levels of Species Richness. *Crop Science* 46, 2062.
- Vetter, S. (2009). Drought Change and Resilience in South Africa's Arid and Semi-Arid Rangelands. 2009. *South African Journal of Science* 106: 29-33.
- Walker, S. Wilson, J. B. 2002. Tests for Nonequilibrium, Instability, and Stabalizing Processes in Semiarid Plant Communities. *Ecology* 83, 809-822.

- Weigelt, A., Röttgermann, M., Steinlein, T., and Beyschlag, W. 2000. Influence of Water Availability on Competitive Interactions between Plant Species on Sandy Soils. *Folia Geobotanica* 35.2: 169-78.
- White, L. M. 1985. Stand Age, Precipitation, and Temperature Effects on Forage Yield. *Journal* of Range Management 38.1: 39-43.
- Xia, Y., Moore, D., Collins, S., and Muldavin, E. 2010. Aboveground Production and Species Richness of Annuals in Chihuahuan Desert Grassland and Shrubland Plant Communities. *Journal of Arid Environments* 74, 378–385.
- Yan, H., Liang, C., Li, Z., Liu, Z., Miao, B., He, C., and Sheng, L. 2015. Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe. *Plos One* 10.4: 1-14.
- Zhang, J., Xianoan, Z., Zhou, X., Peng, L., Lian, J., and Yue, X. 2017. Long-term Grazing Effects on Vegetation Characteristics and Soil Properties in a Semiarid Grassland, Northern China. *Environmental Monitoring and Assessment* 189: 216, 1-13. doi 10.1007/s10661-017-5947-x.

C:4-	Vere	<u>August</u> <u>Rainfall</u>	September Rainfall	October Rainfall	November Rainfall	<u>Sand</u>	Number of Exclosures	Percent Exclosures	Percent
Site	Year	<u>(mm)</u>	<u>(mm)</u>	<u>(mm)</u>	<u>(mm)</u>	Percentage	Used	Used	
1	2012	11	36	4	21	94%	18	36%	74%
2	2012	21	36	2	20	93%	7	14%	97%
3	2012	29	41	4	38	81%	17	34%	65%
4	2012	24	32	6	38	96%	3	6%	84%
5	2012	29	99	2	16	95%	13	26%	91%
6	2012	8	85	30	6	95%	23	46%	77%
1	2013	9	132	3	42	95%	10	20%	53%
2	2013	16	146	14	35	90%	5	10%	48%
3	2013	20	223	3	46	78%	24	48%	46%
4	2013	21	157	16	17	89%	3	6%	56%
5	2013	51	215	21	49	94%	17	34%	66%
6	2013	28	128	20	80	94%	26	52%	72%
1	2014	82	114	30	108	93%	33	66%	29%
2	2014	43	132	5	105	93%	15	30%	60%
3	2014	19	146	6	73	79%	25	50%	16%
4	2014	64	241	8	90	94%	21	42%	54%
5	2014	85	229	28	120	94%	38	76%	38%
6	2014	62	313	103	168	96%	33	66%	65%
1	2015	3	51	186	11	92%	40	80%	9%
2	2015	12	80	178	12	90%	33	66%	50%
3	2015	13	67	177	11	75%	19	38%	47%
4	2015	2	49	97	19	93%	36	72%	35%
5	2015	24	135	131	44	95%	30	60%	33%

Appendix A. Rainfall, soil, number of sampling points used and grazing use by year from 2012 - 2019 in south Texas. Locations are represented as: 1 - San Antonio Viejo Site 1, 2 - San Antonio Viejo Site 2, 3 - San Antonio Viejo Site 3, 4 - Buena Vista, 5 - Santa Rosa, 6 - El Sauz.

Appendix A. continued

Site	Year	<u>August</u> <u>Rainfall</u> (mm)	September Rainfall (mm)	October Rainfall (mm)	November Rainfall (mm)	<u>Sand</u> <u>Percentage</u>	Number of Exclosures Used	Percent Exclosures Used	Percent <u>USE</u>
1	2016	108	61	2	38	92%	33	66%	40%
2	2016	96	35	3	58	90%	41	82%	46%
3	2016	124	47	23	51	80%	31	62%	58%
4	2016	113	26	6	48	93%	35	70%	67%
5	2016	202	58	48	31	94%	32	64%	52%
6	2016	33	117	6	51	94%	38	76%	53%
1	2017	26	14	29	18	92%	13	26%	55%
2	2017	64	23	32	20	92%	9	18%	81%
3	2017	41	37	68	20	78%	29	58%	58%
4	2017	87	37	29	41	94%	36	72%	61%
5	2017	51	55	51	46	94%	13	26%	74%
6	2017	65	25	68	31	95%	22	44%	27%
1	2018	7	296	67	20	92%	8	16%	30%
2	2018	7	275	59	21	90%	22	44%	50%
3	2018	4	188	46	18	78%	27	54%	34%
4	2018	13	479	60	15	93%	33	66%	51%
5	2018	39	307	68	67	94%	32	64%	23%
6	2018	12	201	84	46	94%	34	68%	49%
1	2019	13	51	7	69	93%	19	38%	40%
2	2019	3	117	17	57	91%	19	38%	23%
3	2019	16	46	13	49	78%	33	66%	48%
4	2019	9	159	13	66	93%	34	68%	45%
5	2019	11	100	44	107	94%	21	42%	11%
6	2019	5	138	65	54	95%	26	52%	23%

Appendix B. List of most common forbs preferred by white-tailed deer, determined from previous research regarding forb palatability to deer in south Texas, identified on 4 East Foundation ranches, autumn 2012-autumn 2019.

FORBS- NATIVE ANNUALS	
Common Name	Scientific Name
Blue Curls	Phacelia congesta
Camphor Daisy	Rayjacksonia phyllocephala
Camphor Weed	Heterotheca subaxillaris
Common Broomweed	Amphiachyris dracunculoides
Common Buckwheat	Eriogonum multiflorum
Cory's Croton	Croton coryi
Cow Pen Daisy	Verbesina encelioides
Cut Leaved Evening Primrose	Oenothera laciniata
Desert Goosefoot	Chenopodium pratericola
Desert Mint	Hedeoma drummondii
Downy Ground Cherry	Physalis pubescens
False Dandelion	Pyrrhopappus pauciflorus
Glasswort	Salicornia bigelovii
Golden Tick Seed	Coreopsis basalis
Hooker's Plantain	Plantago hookeriana
Indian Chickweed	Mollugo verticillata
Laredo Flax	Linum elongatum
Laredo Sandmat	Euphorbia laredana
Kidder's Lazy Daisy	Aphanostephus skirrhobasis var. kidderi
Lazy Daisy	Aphanostephus ramosissimus var. ramosissimus
Low Amaranth	Amaranthus polygonoides
Nueces Green Thread	Thelesperma nuecense
Northern Croton	Croton glandulosus var. septentrionalis
Park's Croton	Croton parksii
Partridge Pea	Chamaecrista fasciculata
Pinnate Tansy Mustard	Descurainia pinnata
Plains Gaura	Gaura brachycarpa
Prairie Aster	Aster subulatus var. ligulatus
Rabbit Tobacco	Diaperia candida
Red Berry Nightshade	Solanum campechiense
Red Seeded Plantain	Limonium carolinianum
Ridgeseed Euphorbia	Euphorbia glyptosperma
Rio Grande Phlox	Phlox drummondii ssp. drummondii
Rio Grande Skullcap	Scutellaria muriculata
Rose Palafoxia	Palafoxia rosea

Appendix B. continued

Common Name	Scientific Name
Texas Palafoxia	Palafoxia texana var. ambigua
Rough Buttonweed	Diodia teres
Sandbell	Nama hispidum
Runyon Sunflower	Helianthus praecox ssp. runyonii
Scrambled Eggs	Corydalis micrantha ssp. texensis
Sand Sunfower	Helianthus praecox ssp. argophyllus
Sandy Land Bluebonnet	Lupinus subcarnosus
Scratch Daisy	Croptilon rigidifolium
Short Gland Clammy Weed	Polanisia erosa ssp. breviglandulosa
Showy Palafoxia	Palafoxia hookeriana
Silverleaf Sunflower	Helianthus argophyllus
Annual Seepweed	Suaeda linearis
Snake Cotton	Froelichia drummondii
Stinging Nettle	Urtica chamaedryoides
Texas Croton	Croton texensis
Texas Groundsel	Senecio ampullaceus
Texas Heliotrope	Heliotropium texanum
Texas Sleepy-Daisy	Xanthisma texanum
Three Lobed Florestina	Florestina tripteris
Tropic Croton	Croton glandulosus var. pubentissimus
Tufted Flax	Linum imbricatum
White Leaf Croton	Croton leucophyllus
White Pricklepoppy	Argemone sanguinea
Winged Flax	Linum alatum
Woolly Croton	Croton capitatus var. lindheimeri
Woolly Tidestromia	Tidestromia lanuginosa

FORBS- NATI	VE PERRENIALS

Common Name	Scientific Name
American Snoutbean	Rhynchosia americana
American Nightshade	Solanum americanum
Ashy Dogweed	Thymophylla tephroleuca
Beach Ground Cherry	Physalis cinerascens var. spathulifolia
Bearded Dalea	Dalea pogonathera
Big Foot Water Clover	Marsilea macropoda
Blue-Eyed Grass	Sisyrinchium biforme
Bracted Sida	Sida Ciliaris L. var. mexicana
Bracted Zornia	Zornia bracteata

Appendix B. continued

Common Name	Scientific Name
Bull Nettle	Cnidoscolus texanus
Bush Sunflower	Simsia calva
Cardinal Feather	Acalypha radians
Catclaw Sensitive Briar	Mimosa microphylla
Coast Globe Amaranth	Gomphrena nealleyi
Prostrate Fleabane	Erigeron procumbens
Creeping Bundle Flower	Desmanthus virgatus var. depressus
Creeping Burhead	Echinodorus cordifolius
Creeping Lady's-Sorrel	Oxalis corniculata var. wrightii
Crowded Heliotrope	Heliotropium confertifolium
Crow Poison	Nothoscordum bivalve
Dalea Sp.	Dalea sp.
Dollar Weed	Hydrocotyle bonariensis
Drummond's Wood Sorrel	Oxalis drummondii
Dwarf Dalea	Dalea nana
Engelmann's Daisy	Engelmannia peristenia
	Evolvulus alsinoides var. angustifolius or
Evolvulus Species	nuttallianus
False Ragweed	Parthenium confertum
Fendler's Ivy Leaf Ground Cherry	Physalis hederifolia var. fendleri
Few Flowered St. John's Wort	Hypericum pauciflorum
Golden Dalea	Dalea aurea
Goldenweed	Isocoma drummondii
Goldenrod	Solidago canadensis
Gray's Milkpea	Glactia heterophylla
Hairy Evolvulus	Evolvulus nuttallianus
Heartleaf Fanpetals	Sida cordata
Hibera del Soldado	Waltheria indica
Hoary Milkpea	Galactia canescens
Indian Mallow Species	Abutilon sp.
Karnes Sensitive Briar	Schrankia latidens
Knotweed Leaf-Flower	Phyllanthus polygonoides
Lindheimer Tephrosia	Tephrosia lindheimeri
Mexican Bastardia	Bastardia viscosa
Tropical Mexican Clover	Richardia brasiliensis
Prairie Mexican Clover	Richardia tricocca
Mexican Evening Primrose	Oenothera speciosa
Mexican Hat	Ratibida columnifera
Mistflower (Blue)	Conoclinium coelestinum
Appendix B. continued

Common Name	Scientific Name
Old Plainsman	Hymenopappus scabiosaeus
Oreja de Perro	Tiquilia canescens
Padre Island Mistflower	Conoclinium betonicifolium
Palm Leaf Globe Mallow	Sphaeralcea pedatifida
Penny Leaf Wood Sorrel	Oxalis dichondrifolia
Pidgeon Berry	Rivina humilis
Pincushion Daisy	Gaillardia suavis
Plains Black Foot Daisy	Melampodium cinereum
Prairie Bur	Krameria lanceolata
Prairie Dalea	Dalea compacta
Purple Pleat Leaf	Alophia drummondii
Pussyfoot Dalea	Dalea obovata
Rainlily	Cooperia drummondii
Rio Grande Ayenia	Ayenia limitaris
Ruellia Sp.	Ruellia sp.
South Texas Rushpea	Pomaria austrotexana
Saltwort	Batis maritima
Savannah Milkweed	Asclepias oenotheroides
Sawtooth Frog Fruit	Phyla nodiflora
Scarlet Pea	Indigofera miniata
Scarlet Spiderling	Boerhavia coccinea
Sea Ox Eye	Borrichia frutescens
Sedge Species	Cyperus sp.
Sensitive Plant	Mimosa strigillosa
Shrubby Beebalm	Monarda fruticulosa
Showy Sida	Sida lindheimeri
Shruby Indian Mallow	Abutilon abutiloides
Sida Species	Sida sp.
Silky Evolvulus	Evolvulus sericeus
Silver Bladderpod	Physaria argyraea
Silver Croton	Croton argyranthemus
Silver Leaf Nightshade	Solanum elaeangnifolium
Skeleton Leaf Golden Eye	Viguiera stenoloba
Tampico Seepweed	Suaeda tampicensis
Slender Evolvulus	Evolvulus alsinoides var. angustifolius
Spadeleaf Sida	Sida physocalyx
Spiny Aster	Aster spinosus
Square Bud Daisy	Tetragonotheca repanda
Summer Cedar (Dogfennel)	Eupatorium capillifolium

Appendix B. continued

Common Name	Scientific Name
Sweet Gaura	Gaura drummondii
Texas Senna	Chamaecrista flexuosa var. texana
Texas Snoutbean	Rhynchosia senna var. texana
Texas Vervain	Verbena halei
Torrey's Croton	Croton incanus
Tube Tounge	Justicia pilosella
Wavy Leaved Gaura	Gaura sinuata
Western Ragweed	Ambrosia psilostachya
White Flower Mallow Sp.	Abutilon sp.
Widow's Tear	Commelina erecta var. angustifolia
Wild Mercury	Ditaxis humilis
Wild Onion	Allium canadense
Wild Oregano	Lippia graveolens
Winecup	Callirhoe involucrata var. lineariloba
Woodland Sensitive Pea	Chamaecrista calycioides
Narrow Leaf Shrubby Wood Sorrel	Oxalis frutescens ssp. angustifolia
Woolly Cotton Flower	Gossypianthus lanuginosus var. lanuginosus
Woolly Dalea	Dalea austrotexana
Woolly Globe Mallow	Sphaeralcea lindheimeri
Woolly Stemodia	Stemodia lanata
Yellow Flameflower	Phemeranthus aurantiacus
Yellow Ground Cherry	Physalis cinerascens
Yellow Wood Sorrel	Oxalis dellenii

FORBS- NATIVE BOTH ANNUALS PERRENIALS Common Name Scientific Na

Common Name	Scientific Name
Beaked Vervain	Glandularia quadrangulata
Blackeyed Susan	Rudbeckia hirta
Bladder Mallow	Herissantia crispa
Bristle Leaf Dogweed	Thymophylla tenuiloba
Euphorbia species	Euphorbia sp.
Hierba del Sapo	Eryngium nasturtiifolium
Indian Blanket	Gaillardia pulchella
Net Leaf Rabbit's Ears	Zornia reticulata
Pennsylvania Cudweed	Gamochaeta pensylvanica
Polly Prim	Polypremum procumbens
Scorpion's Tail	Heliotropium angiospermum
Southern Pepperweed	Lepidium austrinum

Appendix B. continued

Common Name

Shaggy Portulaca Sueda Species Virginia Pepperweed

Portulaca pilosa

Suaeda linearis or tampicensis Lepidium virginicum var. medium

FORBS- NON NATIVE ANNUALS

Common Name

Common Purslane Hedge Parsley Slim Lobe Celery Tender Leaf-Flower

Scientific Name

Scientific Name

Portulaca oleracea Torilis arvensis Cyclospermum leptophyllum Phyllanthus tenellus

FORBS- NON NATIVE PERRENIALS

Common Name

Straggler Daisy Spreading Sida

Scientific Name

Calyptocarpus vialis Sida abutifolia

FORBS- NON NATIVE BOTH ANNUALS AND PERRENIALS

Common Name

Scientific Name

Yard Mallow

Malvastrum coromandelianum

GRASSES - NATIVE PERRENIALS	
Common Name	Scientific Name
Alkali Sacaton	Sporobolus airoides
Broomsedge Bluestem	Andropogon virginicus
Brownseed Paspalum	Paspalum plicatulum
Buffalograss	Buchloe dactyloides
Bushy Bluestem	Andropogon glomeratus
Crinkleawn	Trachypogon secundus
Fringed Signalgrass	Urochloa ciliatissima
Green Sprangletop	Leptochloa dubia
Gulf Cordgrass	Spartina spartinae
Gulfdune Paspalum	Paspalum monostachyum
Gummy Lovegrass	Eragrostis curtipedicellata
Hairy Grama	Bouteloua hirsuta
Halls Panicum	Panicum hallii
Hooded Windmillgrass	Chloris cucullata
Inland Saltgrass	Distichlis spicata
Knot Grass	Setaria reverchonii subsp. firmula
Knotroot Bristlegrass	Setaria parviflora
Little Bluestem	Schizachyrium scoparium
Longtom Paspalum	Paspalum lividum
Marsh-hay Cord Grass	Spartina patens
Multiflower False-Rhodesgrass	Trichloris pluriflora
Pan-American Balsam Scale	Elionurus tripsacoides
Pink Pappusgrass	Pappophorum bicolor
Plains Bristlegrass	Setaria leucopila
Purple Dropseed Grass	Sporobolus purpurascens
Purpletop Tridens	Tridens flavus
Red Grama	Bouteloua trifida
Red Lovegrass	Eragrostis secundiflora
Sand Dropseed	Sporobolus cryptandrus
Sand Lovegrass	Eragrostis trichodes
Sand Witchgrass	Digitaria arenicola
Schribner's Panicgrass	Dichanthelium oligosanthes
Seacoast Bluestem	Schizachyrium littorale
Shoregrass	Monanthochloë littoralis
Silver Bluestem	Bothriochloa laguroides
Slender Grama	Bouteloua repens
Slim Tridens	Tridens muticus

Appendix C. List of grasses identified on 4 East Foundation ranches, autumn 2012 – spring 2019.

Appendix C. continued

Common Name	Scientific Name	
Southern Witchgrass	Panicum capillarioides	
Southwestern Bristlegrass	Setaria scheelei	
Spartina Sp.	Spartina sp.	
Switchgrass	Panicum virgatum	
Tanglehead	Heteropogon contortus	
Texas Crabgrass	Digitaria texana	
Texas Grama	Bouteloua rigidiseta	
Texas Tridens	Tridens texanus	
Texas Wintergrass	Nassella leucotricha	
Thin Paspalum Grass	Paspalum setaceum	
Tumblegrass	Schedonnardus paniculatus	
Tumble Love Grass	Eragrostis sessilispica	
Tumble Windmillgrass	Chloris verticillata	
Vine Mesquite	Panicum obtusum	
White Tridens	Tridens albescens	

GRASSES- NATIVE ANNUALS

Common Name	Scientific Name
Fall Witchgrass	Panicum capillare
Needle Grama	Bouteloua aristidoides
Oldfield Threeawn	Aristida oligantha
Southern Sandbur	Cenchrus echinatus

GRASSES- NATIVE BOTH PERRENIALS AND ANNUALS

Common Name	Scientific Name
Coastal Sandbur	Cenchrus spinifex
Dropseed Sp.	Sporobolus sp.
Purple Threeawn	Aristida purpurea
Sandbur Sp	Cenchrus sp.
Threeawn Species	Aristida sp.
Whorled Dropseed	Sporobolus pyramidatus

Common Name
Bermuda Grass
Buffelgrass
Dallisgrass
Guinea Grass

Scientific Name

Cynodon dactylon Pennisetum ciliare Paspalum dilatatum Megathyrsus maximus Appendix C. continued

Common Name

Kleberg Bluestem Lehmann's Lovegrass Scientific Name

Dichanthium annulatum Eragrostis lehmanniana

GRASSES- NON NATIVE ANNUALS

Common Name

Durban Crowfoot Hairy Crabgrass Mediterranean Lovegrass Spike Burgrass

Scientific Name

Dactyloctenium aegyptium Digitaria sanguinalis Eragrostis barrelieri Tragus berteronianus

GRASSES- NON NATIVE BOTH PERRENIALS AND ANNUALS

Common Name

Red Natal Grass

Scientific Name

Melinis repens

GRASSES- EITHER NATIVE OR NON AND PERRENIALS OR ANNUALS

Common Name

Crabgrass Species

Scientific Name

Digitaria sp.

Appendix D. List of non-preferred deer forbs, determined from previous research regarding forb palatability to deer in south Texas, identified on 4 East Foundation ranches, autumn 2012-autumn 2019.

NON-PREFERRED FORBS NATIVE PERENNIALS

Scientific Name
Ambrosia confertiflora
Viguiera stenoloba
Tiquilia canescens
Thymophylla tephroleuca
Monarda fruticulosa
Monarda punctata
Acleisanthes obtusa
Nyctaginea capitata
Solanum eleagnifolium
Phyla incisa

NON-PREFERRED FORBS NATIVE ANNUALS		
Common Name	Scientific Name	
Cowpen Daisy	Verbesina encelioides	
3-Lobed Florestina	Florestina tripteris	
Small Flowered Gumweed	Grindelia microcephala	
Camphor Weed	Heterotheca subaxillaris	
Showy Palafoxia	Palafoxia hookeriana	
Rose Palafoxia	Palafoxia rosea	
Texas Palafoxia	Palafoxia texana	
Wooly Croton	Croton capitatus	
Cory's Croton	Croton coryi	
Tropic Croton	Croton glandulosus	
White-leaf Croton	Croton leucophyllus	
Texas Croton	Croton texensis	
Sandbell	Nama hispidum	

NON-PREFERRED FORBS BOTH NATIVE PERENNIALS AND ANNUALS

Common Name	Scientific Name
Texas Thistle	Cirsium texanum
Bristleleaf Dogweed	Thymophylla tenuiloba
White Prickly Poppy	Argemone albiflora
Trailing Four o'clock	Allionia incarnata

NON-PREFFERED FORBS NON NATIVE ANNUALS	
Common Name	Scientific Name
Prickly Russian Thistle	Salsola tragus

Appendix D. continued Common Name

Velvet Leaf

Scientific Name

Abutilon theophrasti

VITA

Dillan Joseph Drabek

Mailing Address: 5741 Jerome Rd. Schulenburg, TX 78956 *Phone:* +1(979) 733-6493 *Email:* dillandrabek@yahoo.com

I. <u>Professional Experience</u>

Education

- 2020 M.S. Candidate in Range and Wildlife Management, Texas A&M University-Kingsville. Expected Defense Date: April 2020. Expected Graduation Date: August 2020. Supervisor: Alfonso Ortega-Santos.
- 2017 B.S. Range and Wildlife Management, Minor in Biology, Texas A&M University-Kingsville.

Work History

- 2017 Present: Graduate Research Assistant Caesar Kleberg Wildlife Research Institute, Kingsville, TX 78363
- 2013 2017: Vegetation Technician Caesar Kleberg Wildlife Research Institute, Kingsville, TX 78363
- 2015 2017: Vegetation Technician East Wildlife Foundation, Hebbronville, TX
- 2014: Student Researcher Texas A&M University-Kingsville

Honors and Awards

- 2014: High Placing Individual in the Undergraduate Poster Presentation at the Texas Chapter of the Wildlife Society in Corpus Christi, TX.
- 2014 2018: Second place high scoring team in the Plant Identification contest at the Texas Chapter of the Wildlife Society.
- 2014 2018: Second place high scoring team in the Plant Identification contest at the Texas Section Society for Range Management.
- 2018 Second high scoring individual in the plant identification contest at the Texas Section Society for Range Management.

II. <u>Technical Skills</u>

Proficient in Microsoft Office products (Excel, Word, Power Point)

Competent in Geographic Information Systems (Arc GIS)

Competent in SAS 9.4 Statistical Analysis Program

Experience in plant identification of Texas plants (forbs, grasses, shrubs, and cacti), with emphasis in plants of south Texas.

III. **Teaching Experience**

- 2017: Texas A&M University-Kingsville Graduate Teaching Assistant
 2018: Texas A&M University-Kingsville Graduate Teaching Assistant