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In the age of global climate change, extreme climatic events are expected to increase in frequency and severity. Animals will
be forced to cope with these novel stressors in their environment. Glucocorticoids (i.e. ‘stress’ hormones) facilitate an animal’s
ability to cope with their environment. To date, most studies involving glucocorticoids focus on the immediate physiological
effects of an environmental stressor on an individual, few studies have investigated the long-term physiological impacts
of such stressors. Here, we tested the hypothesis that previous exposure to an environmental stressor will impart lasting
consequences to an individual’s glucocorticoid levels. In semi-arid environments, variable rainfall drives forage availability for
herbivores. Reduced seasonal precipitation can present an extreme environmental stressor potentially imparting long-term
impacts on an individual’s glucocorticoid levels. We examined the effects of rainfall and environmental characteristics (i.e.
soil and vegetation attributes) during fawn-rearing (i.e. summer) on subsequent glucocorticoid levels of female white-tailed
deer (Odocoileus virginianus) in autumn. We captured 124 adult (≥2.5-year-old) female deer via aerial net-gunning during
autumn of 2015, 2016 and 2021 across four populations spanning a gradient of environmental characteristics and rainfall in
the semi-arid environment of South Texas, USA. We found for every 1 cm decrease in summer rainfall, faecal glucocorticoid
levels in autumn increased 6.9%, but only in lactating females. Glucocorticoid levels in non-lactating, female deer were
relatively insensitive to environmental conditions. Our study demonstrates the long-lasting effects of environmental stressors
on an individual’s glucocorticoid levels. A better understanding of the long-term effects stressors impart on an individual’s
glucocorticoid levels will help to evaluate the totality of the cost of a stressor to an individual’s welfare and predict the
consequences of future climate scenarios.
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Introduction
Individuals constantly interact with and respond to threats
in their environment (Sheriff et al., 2010; Borowik et al.,
2020; Abernathy et al., 2022). While some threats may be
escapable via habitat selection and movement [e.g. predation
(Smith et al., 2019; Dickie et al., 2020); extreme storms
(Abernathy et al., 2019); local drought (Abraham et al.,
2019)], other threats occur at broader geographic extents
and may be inescapable [e.g. shifting competitive balances
(Poloczanska et al., 2008); thermal dysregulation (Lenarz
et al., 2009); reduced food availability (Wasser et al., 2017)].
With global climate change, such inescapable threats, includ-
ing broad-scale drought, are predicted to increase in severity
and frequency (Smith, 2011; Spinoni et al., 2018; IPCC,
2021). Therefore, animals will increasingly be forced to cope
with such changes in their environment (Monteith et al.,
2015; Sydeman et al., 2015; Ruprecht et al., 2016). Fitness-
related consequences to such events can occur immediately in
response to the stressor but may persist long after the stressor
has occurred, inducing a carry-over effect (Harrison et al.,
2011; Legagneux et al., 2012; Blomberg et al., 2014). Here,
we define carry-over effects as a past experience imparting an
effect on an individual despite temporal separation between
the inciting event and the impact (Harrison et al., 2011).
For example, eastern fence lizards (Sceloporus undulatus)
treated with exogenous stress hormones had reduced fit-
ness (i.e. reproductive success and survival); however, the
effect on fitness was exacerbated when females also experi-
enced higher ambient temperatures the previous winter due to
increased energy expenditure during hibernation (MacLeod
et al., 2018). While laboratory studies have begun to identify
physiological mechanisms associated with carry-over effects
(Banerjee et al., 2011; Taborsky et al., 2013; Ledón-Rettig
et al., 2023), such studies are rare in free-living mammals
(Davies et al., 2013; Davy et al., 2017).

One of the most conserved physiological responses to
environmental stressors in vertebrates is the activation of the
hypothalamic–pituitary–adrenal (HPA) axis and subsequent
release of glucocorticoids (GC) (Sapolsky et al., 2000; Sher-
iff et al., 2009; Bonier et al., 2009a). When an individual
perceives a stressor, the hippocampus triggers the activa-
tion of the HPA axis thus increasing GC secretion from
the adrenal glands (Sapolsky et al., 2000; Herman et al.,
2005). Physiologically, GC secretion increases plasma glucose
levels by decreasing the use of glucose for non-essential pro-
cesses and towards energetically demanding processes (Mac-
Dougall-Shackleton et al., 2019). While GCs are often termed
‘stress’ hormones, GCs better represent a mediator of ener-
getic balance within an individual (Sapolsky et al., 2000;
Remage-Healey and Romero, 2001; Landys et al., 2006).
GCs trigger a number of physiological responses leading to a
cascade of downstream effects shifting energy expenditure in
the body to meet the energetic demands the stressor imposes
on the individual (Wingfield et al., 1998; Charmandari et al.,
2005). These responses to stressors are specific to the individ-

ual and may mediate energetic trade-offs (e.g. reproduction,
survival, body condition) or drive changes in behaviour (e.g.
increase foraging or refuge use) to optimize fitness (Bonier
et al., 2009b; Boonstra, 2013). For example, many studies
have found GCs are associated with reduced reproductive
output in favour of increased survival (Wingfield et al., 1998;
Sapolsky et al., 2000; Lancaster et al., 2008; Sheriff et al.,
2009; Almasi et al., 2013; Patterson et al., 2014; MacLeod
et al., 2018), while other studies have demonstrated increased
GCs may help individuals maintain reproductive output when
experiencing a stressor, but at the cost of body condition (e.g.
Sheriff et al., 2017). GCs are commonly quantified through
faecal GC metabolites (FGM) because of the rapid and exten-
sive metabolism of plasma GCs before excretion (Wasser
et al., 2000). While we are gaining a better understanding
of how environmental stressors may impact GCs and the
potential outcomes of such responses, little is known about
the long-term impacts of past stressors on current GC levels
in a long-lived, free-living mammal.

The role GCs play in mediating energetic trade-offs in
response to environmental stressors suggests GCs may be
integral in our understanding of the long-term impacts of past
stressors on individuals. GCs are elevated in response to a
stressor (Sapolsky et al., 2000; Charmandari et al., 2005). If
an individual is currently coping with or recovering from a
previous stressor, GCs may mediate this effect. For example,
in koalas (Phascolarctos cinereus), rainfall two months prior
to sample collection was predictive of current GC levels,
an effect attributed to vegetation growth and leaf moisture
(Davies et al., 2013). Through better understanding of the
long-term impacts of stressors on individuals, we can evaluate
the totality of effects a stressor has on an individual.

Drought is one of the most important environmental stres-
sors that is increasing in frequency and intensity with chang-
ing climate (Gesquiere et al., 2008; Carrão et al., 2018;
Naumann et al., 2018; Anderwald et al., 2021), especially in
arid and semi-arid regions where climate change is expected to
increase desertification (Sherwood and Fu, 2014). Desertifica-
tion imparts severe consequences to wildlife in these regions
given the importance of rainfall for plants and forage avail-
ability (Peterson et al., 1992; Lidon, 2012; Folks et al., 2014;
Cain et al., 2017; DeYoung et al., 2019). For example, forbs, a
critical nutritional resource for herbivores, are mostly absent
during periods of drought in many semi-arid grasslands (DeY-
oung et al., 2019). Most studies of the effects of drought
on GCs evaluated the short-term immediate effects (Strier
et al., 1999; Foley et al., 2001; King and Bradshaw, 2010),
while comparatively few studies have explored how drought
may impart long-term consequences to an individual’s GC
levels recovering from past drought (Davies et al., 2013).
Understanding the physiological mechanism allowing free-
living animals to cope with a previous environmental stressor
(i.e. drought) is essential, especially when arid climates are
predicted to replace more temperate climates (Alessandri
et al., 2014).
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The group of animals most likely to be impacted by
drought are those who are most energetically vulnerable (e.g.
juveniles, pregnant females, lactating females). For example,
rainfall events occurring in mid- to late-pregnancy had the
strongest positive effect on subsequent juvenile survival and
recruitment in mule deer (Odocoileus hemionus) populations
(Heffelfinger et al., 2018). An effect attributed to rainfall
and subsequent forage availability during lactation, which
accounts for upwards of 80% of total energetic costs during
reproduction due to increased water and dietary requirements
(Jönsson, 1997; Pekins et al., 1998; Wheatley et al., 2008).
Subsequently, the most energetically vulnerable individuals
may remain in an energy deficit long after the drought has
passed. To mediate an energetic balance, GCs may remain
elevated long past resolution of the drought.

Here, we tested two competing hypotheses. The first being
previous exposure to an environmental stressor would have
lasting consequences to an individual’s GC levels. The sec-
ond being current conditions are more predictive for an
individual’s GC levels regardless of previous exposure to envi-
ronmental stressors. To test these hypotheses, we examined
how variable summer and autumn rainfall influenced the
FGM concentrations of free-living, female white-tailed deer
(Odocoileus virginianus) in autumn. To properly estimate the
rainfall effect, we included environmental characteristics (i.e.
percent sand in the surface soils, percent brush cover) to
account for spatial variation in habitat quality. Our study
occurred in a semi-arid ecosystem in South Texas, USA on
four ranches that span a gradient in annual rainfall and envi-
ronmental characteristics (Fig. 1). In South Texas, summer
is characterized by highly variable rainfall and temporally
overlaps the life stages of white-tailed deer with the high-
est energetic demands (i.e. late gestation, early lactation).
Therefore, individuals are likely to encounter highly variable
precipitation during this time, potentially inducing carry-over
effects.

We predicted that (i) reproductively mature female deer
exposed to reduced summer rainfall would have higher FGM
concentrations in autumn, (ii) this effect would be greatest in
those females carrying the largest energetic costs (i.e. lactating
females) and (iii) this physiological carry-over effect would
influence FGM concentrations more than current conditions
due to the high demands of maternal investment during
this critical life-history period. To discern between a long-
term effect of reduced summer rainfall and an immediate
effect, we examined the influence of current environmental
conditions (i.e. percent sand in the surface soils, percent brush
cover, rainfall 1-month and 2-months prior to capture—all
strong predictors for habitat quality and vegetation growth
(Davies et al., 2013; Foley et al., 2018; Rankins et al., 2023b)
within the study area on female FGM concentrations. Our
study fills a critical knowledge gap examining how a past
environmental stressor may influence FGM concentrations
in a long-lived, iteroparous ungulate in an unmanipulated
field study.

Materials and Methods
Study area
This research was conducted in the South Texas Plains and
Coastal Sand Plain ecoregions (Supplementary Material Fig. S1
and Fig. S2) of Texas, USA (Bailey, 1995) during the years
2015, 2016 and 2021. We conducted research on four East
Foundation ranches: Buena Vista Ranch (6113 ha), El Sauz
Ranch (10 984 ha), Santa Rosa Ranch (7544 ha) and San
Antonio Viejo Ranch (60 752 ha). East Foundation lands are
utilized to promote the advancement of land stewardship
through ranching, science and education. As such, these lands
are working cattle ranches. Native wildlife are not hunted,
and the predator population is unexploited. Vegetation
characteristics and rainfall patterns varied among and within
sites (Fulbright et al., 2021; Rankins et al., 2023b, 2023a,
Fig. 1). The Coastal Sand Plain consists mostly of sandier, less
productive soils (i.e. decreased soil water-holding capacities)
when compared to the more productive soils of the South
Texas Plains (Lohse, 1952; Fulbright et al., 1990, Fig. 1).
Annual rainfall across the Coastal Sand Plain averages 64 cm
(range 54–76 cm), while the South Texas Plains average 63 cm
(range 48–91 cm) (Oregon State University, 2011, 30-year
average, Supplementary Material Fig. S1).

White-tailed deer capture and sample
collection
We captured 124 reproductively mature female white-tailed
deer via aerial net-gunning (Webb et al., 2008) during October
and November of 2015, 2016 and 2021 (Table 1). White-
tailed deer in South Texas are an ideal species to test the
influence of past environmental stressors on current FGM
concentrations due to their life histories and reproductive
strategies (Mautz, 1978; Pekins et al., 1998). In our system,
white-tailed deer develop fat reserves prior to the breeding
season and then utilize currently available forage during late
gestation and lactation to maintain their energetic require-
ments. In years with reduced rainfall and poor environmen-
tal conditions, female deer may finance late gestation and
lactation solely on body reserves (Mautz, 1978). Due to
the stochasticity in weather patterns in our system, environ-
mental conditions experienced at ovulation (e.g. November,
December), may be drastically different at parturition (e.g.
June, July) (Illige, 1951; Kie and White, 1985). Therefore, to
maximize the range of environmental conditions (i.e. rainfall,
environmental characteristics), we distributed our sampling
effort across the ranches and years (Fig. 1). Upon capture, we
recorded a global positioning system (GPS) location (eTrex
10, eTrex 22x, Garmin, Olathe, KS, USA), secured the deer
with hobbles, applied a blindfold and immediately trans-
ported them to a central processing area. We determined
reproductive status from evidence of lactation via teat pal-
pation and milk expression, estimated age using tooth wear
and replacement (Severinghaus, 1949; Foley et al., 2021),
determined body condition score through visualization and
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Figure 1: Maps displaying our study areas in South Texas, USA encompassing four East Foundation ranches: Buena Vista Ranch, El Sauz Ranch,
Santa Rosa Ranch and San Antonio Viejo Ranch. Top row: Sequentially smaller showing the geographic location of the study ranches; Middle
row: Distribution of captured deer GPS locations by ranch; Bottom left: Spatial representation of percentage of brush cover; Bottom centre:
Spatial representation of total summer rainfall (mm) averaged across 2015, 2016 and 2021; Bottom right: Spatial representation of percentage of
sand content of the soil. The areas of high sand content demonstrate the ecoregion of the Coastal Sand Plain.

palpation (Riney, 1960) and collected a faecal sample for
FGM concentration analysis (Sheriff et al., 2011; Dantzer
et al., 2014). To uniquely identify individuals, we placed
numbered aluminum ear tags (style 1005–49; National Band
and Tag Company, Newport, KY, USA) and released captured
deer on site (Belser et al., 2017). All animal handling followed
protocols approved by the Texas A&M University-Kingsville
Institutional Animal Care and Use Committee (protocol num-
bers: 2014-09-29 and 2020-10-19).

Environmental parameters
We obtained rainfall totals for the months of July and
August of each capture year (i.e. 2015, 2016, 2021)
using the raster layer produced by the PRISM Climatic
Group (Oregon State University, 2011, spatial resolution:
4 km, Fig. 1, Supplementary Material Table S1). We selected
July and August as these months coincide with early

lactation, the most energetically costly stage of reproduction
(Gittleman and Thompson, 1988; Stearns, 1992; Therrien
et al., 2008; Wheatley et al., 2008). We also included
rainfall 1- and 2-months prior to capture as these months
predict current vegetation growth and habitat quality
(Davies et al., 2013; DeYoung et al., 2019). We sourced
raster layers for percent sand (spatial resolution: 250 m,
Fig. 1, Supplementary Material Table S2) in the surface soil
horizon (0–5 cm) from the International Soil Reference and
Information Centre (Poggio et al., 2021) and annual estimates
of percent brush cover (spatial resolution: 30 m, Fig. 1,
Supplementary Material Table S3) from the Rangeland
Analysis Platform (Allred et al., 2021). For each of these
covariates, we averaged the conditions an animal would have
experienced for a given capture year within a 150-ha buffer
around each deer capture location, providing a single value
for each environmental metric for each individual deer. We
used 150-ha buffer as this size is a reasonable proxy of space
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Table 1: Reproductive status of captured mature (≥2.5-year-old)
female white-tailed deer by year and East Foundation ranch. N = total
number of deer, SAV = San Antonio Viejo Ranch

Ranch Year N Lactating Not lactating

Santa Rosa 2015 4 1 3

Buena Vista 2015 7 4 3

Buena Vista 2016 6 6 0

El Sauz 2015 14 6 8

El Sauz 2016 13 1 12

SAV 2015 23 12 11

SAV 2016 35 10 25

SAV 2021 22 11 11

Total 124 51 73

use of deer in the system and represents an average home
range size based upon a concurrent study of deer movement
using GPS collared adult female deer (Spencer et al., 2024).
We excluded inaccessible areas (i.e. coastal bay, perimeter
fence) from an individual’s buffer prior to calculating the
mean values for environmental conditions within the buffers.

Faecal collection and faecal GC metabolite
analysis
To estimate GCs in white-tailed deer, we measured FGM con-
centrations, which represent an integrated average of plasma
GC levels an individual experienced over a species-specific
time duration (Sheriff et al., 2011; Dantzer et al., 2014). For
white-tailed deer, FGMs represent an average of plasma GC
levels 12–24 hours prior to collection depending upon gut
passage time of the individual (Millspaugh et al., 2002). Due
to the integrated average of plasma GC levels with FGMs,
we can determine if an individual is still coping with or
recovering from the stress of reduced summer rainfall without
complicating factors such as capture stress.

We collected faecal samples directly from the rectum,
placed samples into individual whirl-paks and immediately
placed samples into a cooler of wet ice. Within 12 hours of
collection, we placed samples into a − 14◦C freezer. Within
48 hours of collection, we placed all samples into a − 20◦C
freezer until further analysis. Detailed methods for the sam-
ple analysis can be found in Millspaugh et al. (2002), who
validated this technique specifically for use with white-tailed
deer. Briefly, we freeze-dried samples for 24 hours using a
lyophilizer before we ground the samples into a homogenous
powder. We then added 15 mL of 70% ethanol to a 0.1
± 0.01 g subsample and vortexed for 30 minutes. We then
centrifuged samples for 20 minutes at 2500 rpm and the
resultant supernatant was stored at −20◦C until assayed. We
analysed samples using an I125 corticosterone radioimmunoas-
say kit (Catalogue No. 207120, MP Biomedicals, Costa Mesa,

CA) to quantify FGM concentrations. We analysed samples
according to the manufacturer’s protocol with the exception
of halving the volume of all reagents (Wasser et al., 2000;
Millspaugh et al., 2002).

Statistical analyses
We conducted all data preparation and analysis using Pro-
gram R version 4.2.2 (R Core Team, 2018). Using the ‘lme4’
package (Bates et al., 2015), we fit a linear mixed effects model
and fit a series of models, including a full and null model, to
predict FGM concentrations as a function of four, two-way
interactions between reproductive status (i.e. lactating, not-
lactating) and the variables of total rainfall (July–August, 1-
month and 2-months prior to capture), percent sand in surface
soil, percent brush cover, body condition score and ordinal
date, as well as each of these parameters as main effects. We
included ordinal date (i.e. the number of days past October 1
of the capture year) in the analysis to account for the variation
in lactating females as a function of capture date because deer
captured later in the season are less likely to show evidence
of lactation (Cherry et al., 2016). Lastly, we included random
effects with random intercepts for ranch and capture year. To
avoid pseudoreplication from repeated measures, we omitted
the second capture occasion from three individuals. We scaled
and centred all model covariates and log transformed FGM
concentrations to reduce positive skew in model residuals.
We used the ‘dredge’ function from the ‘MuMIn’ package
(Barton, 2023) to evaluate all possible combinations of vari-
ables used in the full model. Our hypothesis regarding carry-
over effects was represented by models including rainfall
during July and August. If these models received more support
than models including static environmental variables or more
recent rainfall (1-month and 2-months prior to capture), we
would interpret that result as support for the hypothesis that
previous exposure to environmental stressors would influence
an individual’s current GC levels (i.e. physiological carry-
over effect). To remove the negative bias AIC imposes for
small sample sizes (Hurvich and Tsai, 1989), we used Cor-
rected Akaike Information Criterion (AICc) to identify the
most supported model. We evaluated the informative param-
eters within the most supported model using Satterthwaite’s
method to estimate the degrees of freedom and compute P-
values for all direct effects and interactions using the t-statistic
(Kuznetsova et al. 2017).

Results
We found evidence reduced summer rainfall imparted long-
term effects on female GC levels, but the effect of past environ-
mental conditions depended on reproductive status. The most
supported model predicting FGM concentrations included
the interaction between summer rainfall and reproductive
status (i.e. lactating, not lactating) (β̂ = −0.32, SE +/− 0.08,
P < 0.001, Tables 2 and 3). For every 1 cm decrease in summer
rainfall, FGM concentrations increased 6.9% in lactating
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Table 2: Candidate models predicting the relationship between FGM concentrations, rainfall and habitat
characteristics on four East Foundation ranches

Model K AICc ΔAICc wi

Lactation + Summer Rain + Lactation∗Summer Rain 7 202.45 0 0.39

Brush 5 204.02 1.69 0.56

Null model 4 205.23 4.06 0.9

Rain 2-Months Prior to Capture 5 207.10 4.64 0.94

Rain 1-Month Prior to Capture + Brush 6 207.43 4.97 0.97

The models include our competitive models (i.e. AICc < 2), a null model and models for current rainfall (i.e. 1- and 2-months prior to capture).
K is the number of variables. ΔAICc is the difference between the top performing model’s AICc and the lesser performing models. wi is the
cumulative model weight. Brush is percent brush cover. Summer Rain is total rainfall during July and August within years 2015, 2016 and
2021.

Table 3: Parameters estimates for the top performing linear
regression model predicting log-FGM concentrations of reproductively
mature female white-tailed deer as a function of reproductive status
(i.e. lactating, not lactating), total rainfall in July and August, and the
interaction between reproductive status and rainfall in July and August
during autumn of 2015, 2016 and 2021 on the East Foundation’s
Buena Vista Ranch, El Sauz Ranch, Santa Rosa Ranch and San Antonio
Viejo Ranch in South Texas, USA. Our reference class was non-lactating
females. Lactating = lactating female, summer rainfall = total rainfall
during July and August within years of study, beta coefficient (β̂),
standard error (SE), degrees of freedom (DF), t-value and P-value

Parameters β̂ SE DF t-value P-value

Intercept 4.51 0.34 2 13.43 0.004

Lactating −0.08 0.09 114 −0.88 0.379

Summer Rainfall −0.04 0.06 115 −0.72 0.471

Lactating∗Summer
Rainfall

−0.32 0.08 116 −3.61 <0.001

females in autumn; however, there was no effect of summer
rainfall on FGM concentrations in non-lactating females in
autumn (Fig. 2). We found some support for a model includ-
ing percent brush cover (β̂ = 0.17, SE ± 0.06, P < 0.001,
Table 2). For every 1% increase in brush cover, FGM concen-
trations increased 1.44%. However, we found no support for
models including other environmental conditions as models
containing percent sand in soil, ordinal date, body condition
score and current rainfall (i.e. 1- and 2-months prior to
capture) were not competitive with the top model (Table 2).

Discussion
We found support for the hypothesis that previous exposure
to environmental stressors would influence an individual’s
current GC levels. Our findings show reduced summer rain-
fall was associated with an increase in FGM concentrations
during autumn in lactating deer; however, summer rainfall
had little effect on autumn FGM concentrations in non-
lactating female deer. We found no support for the compet-
ing hypothesis that current conditions are more predictive

of an individual’s GC levels. Our findings show autumn
rainfall (i.e. 1-month and 2-months prior to capture) had
no effect on FGM concentrations in reproductively mature
female deer. Lastly, there was no effect of body condition on
FGM concentrations, suggesting this physiological response
was not mediated by nutritional stress. Our findings provide
evidence past environmental stressors, specifically reduced
seasonal rainfall, may impact current GC levels, particularly
in those individuals most energetically vulnerable, such as
reproductively active females.

The long-term impact of reduced summer rainfall on
autumn FGM concentrations in lactating, but not non-
lactating, female deer suggests an individual’s energy balance
may play a pivotal role in the long-term consequences of
environmental stressors on GC levels. Prolonged activation of
the HPA axis after the stressor has ended may help in energy
regulation to aid the individual in coping with and recovering
from the costs associated with the stressor (Wingfield et al.,
1998). In our study, it is likely lactating female deer who
experienced reduced summer rainfall had higher GCs in
autumn because they may have still been in an energetic
deficit (Gittleman and Thompson, 1988; Clutton-Brock et al.,
1989; Pekins et al., 1998; Therrien et al., 2008). The required
energy input for lactation may not be met during times of
reduced rainfall triggering the release of GCs to mobilize
energy to finance reproduction with an individual’s own
body stores (Mautz, 1978; Stephens et al., 2014; Rödel et al.,
2016). This energy deficit may remain high despite deer being
temporally separated from the summer conditions and having
recovered from any nutritional deficits at the time of sampling
in autumn, thus producing sustained elevations in GC levels to
meet energetic demands. We also found FGM concentrations
were not influenced by current rainfall conditions (i.e. 1- and
2-months prior to capture) despite considerable variation
across years and populations. In South Texas, autumn
rainfall is the primary driver of forage availability at the
time of our sampling efforts (Box, 1960; Dodd and Holtz,
1972). Many studies have shown current nutritional resource
availability can drive FGMs in free-living animals (Chapman
et al., 2007; Busch and Hayward, 2009; Ayres et al., 2012;
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Figure 2: Model output depicting the relationship between FGM concentrations (ng/g) and summer (i.e. July and August) rainfall (mm) in
lactating (solid line) and non-lactating (dashed line) female white-tailed deer on four East Foundation ranches during years 2015, 2016 and
2021. Bands around the predicted curves represent 95% confidence intervals. The triangles represent FGM concentrations of lactating female
deer. The squares represent FGM concentrations of non-lactating female deer.

Wasser et al., 2017; Hunninck et al., 2020). In our study, the
lack of effect of current conditions on FGMs, as compared
to past conditions, may reflect the impact summer rainfall
conditions impose on a lactating female deer’s energetic needs.
While lactating females may still utilize currently available
forage to finance the costs of reproduction, the amount of
energy consumed from the landscape may be insufficient to
meet the deficit reduced summer rainfall imposed on the
individual’s energetic balance. Thus, GCs remain elevated.
The lack of effect of more immediate rainfall on FGM
concentrations in autumn emphasizes the importance of
understanding and recognizing stressors that impact animals
during vulnerable life history stages (i.e. early lactation).

We found marginal support for the model predicting
FGM concentrations as a function of percent brush cover.
FGMs rose with increasing percent brush cover. Brush
in a semi-arid region provides white-tailed deer thermal
refugia (Dykes, 2022), nutrition (Arnold and Drawe,
1979; Hewitt, 2011; DeYoung et al., 2019) and predator

avoidance (Kie and Bowyer, 1999). Although in South Texas,
many carnivores select brush cover (Sergeyev et al., 2023).
Nonconsumptive effects of predators on prey physiology
have been demonstrated across taxa (Sheriff et al., 2010;
Vitousek et al., 2014; Hammerschlag et al., 2017; Dulude-de
Broin et al., 2020). Therefore, it is possible deer who selected
brush cover for concealment had higher GC levels because
they experienced greater predation risk. Alternatively, brush
may directly impact FGMs through digestion dynamics. In
ruminants whose diets shifted to more woody vegetation,
FGMs increased (Hunninck et al., 2020), an effect likely
attributed to energetic costs of digestion (Vangilder et al.,
1982). While we do not have dietary data for the individuals
selecting brush cover, our results on the relationship between
brush and FGMs are of interest and provide an area where
additional research is needed.

FGM concentrations were not influenced by percent sand
in the surface soils despite the reported relationship between
this environmental attribute and deer productivity in our
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system (Rankins et al., 2023b). This result was surprising
given previous studies showed individuals living in high qual-
ity habitat had lower GC levels when compared to individ-
uals in low quality habitat (Shipley et al., 2022; Whipple
et al., 2022). For example, in impala (Aepyceros melampus)
in the Serengeti, GC levels increased with declining vegeta-
tion greenness (measured by normalized difference vegetation
index), which was attributed to reduced rainfall leading to
a lack of nutrient-rich vegetation forcing impala to shift
their diet to less nutrient-rich forage (Hunninck et al., 2020).
In American pika (Ochotona princeps), GC levels increased
with reduced habitat quality, likely driven by the timing of
snowmelt, spring green-up and nutritional availability (Whip-
ple et al., 2022). In our study, we saw stronger evidence
for summer rain than stable environmental characteristics on
FGM concentrations. These findings emphasize the impor-
tance of the quantity and timing of rainfall in a semi-arid
environment such that the effect of habitat characteristics
on FGMs was overshadowed by the predominant effect of
rainfall (DeYoung et al., 2019).

This is one of the first studies to examine how a past
stressor may have long-term impacts on individual GC lev-
els in a free-living, long-lived mammal. We found summer
environmental conditions (i.e. reduced summer rainfall) sig-
nificantly increased FGM concentrations in lactating, but not
non-lactating deer in autumn, findings consistent with a phys-
iological carry-over effect. Although our methodology and
findings are robust, we acknowledge our approach depended
on simplifying assumptions and that there may be confound-
ing factors in our observational study. By selecting a 150-
ha buffer around capture locations, we have simplified the
dynamics of deer space use and movement. Nonetheless, we
suggest our method is a reasonable proxy of space use based
upon concurrent movement data from our system (Spencer
et al., 2024). Additionally, we determined reproductive status
via evidence of lactation at the time of capture. This method
is a coarse measure of reproduction that is insensitive to
litter size and may have miscategorized female deer who were
reproductively active during summer but were without a fawn
at the time of capture due to early predation or abandonment
(Cherry et al., 2016). Despite this limitation, lactation status
at the time of autumn captures is an appropriate measure of
reproductive status because the highest percentage of fawn
mortalities occur within the first three weeks of life, thus
alleviating the energetic burden of lactation on the mother
(Rohm et al., 2007; Grovenburg et al., 2011; Aubin et al.,
2022; Clevinger et al., 2024). Lastly, there was high variability
in the FGM concentrations of non-lactating individuals at
all values of summer rainfall. Given we did not know the
lactation status of individuals during summer, it is difficult for
us to evaluate this variability in FGMs. Thus, future research
should explore how maternal behaviour and movement deci-
sions influence carry-over effects.

Understanding the long-term effects of extreme precipi-
tation patterns on individual GC levels is critical given the

predicted increase in drought frequency and severity with
global climate change (Trenberth et al., 2014; Spinoni et al.,
2018; Taylor et al., 2021). Increased variability in rainfall
patterns may impart more severe consequences than antic-
ipated if individuals are still recovering from previous con-
ditions, especially if the individual is in a more energetically
vulnerable life history stage. These physiological carry-over
effects may directly influence juvenile recruitment through
impacts on reproductive investment (Smith et al., 2004),
ovulation (Cherry et al., 2016), and the timing of breed-
ing seasons (Goutte et al., 2010, Zani and Stein, 2018), an
important variable when considering harvest recommenda-
tions or recovery plans. In conclusion, understanding how
previously experienced environmental stressors continue to
impact an individual’s GC levels through physiological carry-
over effects may provide insights into how animals cope with
and respond to climate change and the associated increase in
extreme environmental events.
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