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ABSTRACT 

 

 The handheld point of care analyzer is a quick and feasible option to obtain 

hematology data from individuals. The iSTAT-1® was used to evaluate select venous 

blood analytes obtained via jugular venipuncture from 238 passerine birds from South 

Texas. These data were used to assess the health of birds in the area while taking into 

consideration life history (migratory or sedentary), locale, seasonality, sex, and age. 

Migratory birds had increased concentrations of pO2, hematocrit, hemoglobin, and 

glucose as compared to sedentary birds. This can be attributed to the increased need of 

oxygen and carrying capacity involved with long duration flights. Increased glucose and 

lower ionized calcium concentrations were observed in migratory birds as a result of 

breakdown of fat deposits in the body to fuel the increased levels of muscular activity. 

During the hotter months of the year, birds’ response to handling environmental stress 

was exhibited with relative respiratory acidosis. When sedentary birds sampled from 

South Texas were compared to a previous study from Central Texas, venous blood 

analytes differed by locale but were within the ranges of healthy populations. This leads 

to the conclusion that sedentary avian communities can be used as bioindicators of a 

healthy ecosystem. 

 Few assessments of louse-host associations in Texas involving multiple host 

families and genera have occurred. My assessment of 446 birds captured in South Texas 

revealed 64 host associations, of which 31 were previously unknown in the literature. In 
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addition to these new host associations, I also was able to identify 25 unique genetic 

lineages. There are 17 unique genetic lineages that are associated with new host 

associations. This leads to the possibility of having at minimum 17 and as many as 25 

potential new species from this study. Morphologically I was unable to identify any lice 

to species, but sequences from GenBank assisted with some specimen identification to 

species. Using louse-host associations and the unique genetic lineages found, I was able 

to identify specimens that could represent new sequences to GenBank or new species to 

science. 
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CHAPTER I 

INTRODUCTION 

 Approximately 95% of all Texas land is privately owned, which can make it 

difficult for researchers to be able to access these lands and address biological questions 

about the organisms that inhabit the area. This study was conducted on East Foundation 

lands as part of larger biodiversity assessment of amphibians/reptiles, birds, and small 

mammals in South Texas. 

 Hematological assessments are becoming a popular method within the veterinary 

community to assess health, due to the minimal impact on the bird and small amount of 

blood required (Deem et al. 2011; Fokidis, Greiner, and Deviche 2008; Sheldon et al. 

2008). Point of care analyzers have allowed for assessment of respiratory and 

cardiovascular systems via measurement of avian acid-base status, biochemical fluid 

balance, electrolytes, and blood gases (Heatley et al. 2013). Blood gas analytes are 

defined as the biochemical composition of the blood. The results that the point of care 

analyzers provide give insight to individual health and possibly physiological changes 

brought on from the environment. Several studies have investigated effects of ecosystem 

health and the birds hematological response; these studies were able to show differences 

in hematology linked to negative ecosystem health (Llacuna et al. 1996, Ruiz et al. 2002) 

 Chewing lice (Insecta: Phthiraptera) are obligate ectoparasites that can be found 

all around the world on their avian hosts (Marshall 1981). Chewing lice belong to two 

suborders: Amblycera and Ischnocera with distinctive morphologies (Waterhouse 1953, 
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Johnson et al. 2012). These ectoparasites feed on feathers and skin debris and 

occasionally on blood (Waterhouse 1953). Although lice are obligate parasites, they 

utilize two methods of transmission to move to a new host. Vertical transmission 

happens by direct contact to another individual and horizontal transmission via phoresis 

(Keirans 1975, Johnson and Clayton 2003). Texas is an unstudied area, when it comes to 

louse-host associations. Although, a few studies have examined lice parasitizing doves in 

from Cameron and Hidalgo Counties (Johnson et al. 2002a,  Moyer et al. 2002, Bush and 

Clayton 2006) which is close to sampling localities from this study in South Texas.  

 This thesis will focus on creating baseline information of blood gas analytes from 

birds in South Texas, comparing blood analyte values of migratory and sedentary birds, 

comparing bird analyte values from the South Texas to the Central Texas ecoregion, and 

determine is sedentary passeriforme communities are useful bioindicators of ecosystem 

health. In addition, this study will also assess avian chewing louse diversity in South 

Texas by investigating louse-host associations and determine relationships within groups 

of lice using phylogenetic analysis.  
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CHAPTER II 

USING SELECT VENOUS BLOOD GAS ANALYTES TO ASSESS INTRINSIC 

FACTORS ON PASSERIFORME HEALTH IN SOUTH TEXAS 

II.1 Introduction 

 Effects of habitat alteration or destruction are frequently investigated, but many 

studies only approach the issue from a habitat management perspective. To fully 

understand the effects that environmental changes have, especially on organisms such as 

birds, we need to address their physiological response to the change (Albano et al 2012). 

Environmental changes can cause stress to the inhabitants of the area and have been 

linked to nutritional deficiencies, hormonal imbalance, inflammation, and chronic 

infection (Briggs et al. 1996). Several studies have looked at the effects of an altered 

(polluted or degraded) ecosystem and the hematological response of the birds that 

inhabit the area (Llacuna et al. 1996, Ruiz et al. 2002, Elezaj et al. 2011). These studies 

were able to show differences of certain hematological parameters that impact bird 

health and can be associated with the conditions affecting health of the ecosystem. 

 Hematological assessment is an increasingly popular method to assess health 

with minimal negative impact on the individual bird (Fokidiset et al. 2008, Sheldon et al. 

2008, Deem et al. 2011). Point of care analyzers have allowed for assessment of 

respiratory and cardiovascular systems via measurement of avian acid-base status, 

biochemical fluid balance, electrolytes, and blood gases (Heatley et al. 2013). The 

iSTAT-1® analyzer requires only .15 µl of blood and provides results within two 
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minutes for various blood analytes. The iSTAT-1® has been used to determine multiple 

analytes for avian species such as chickens, passerines, and parrots ( Steinmetz et al. 

2007, Paula et al. 2008, Martin et al. 2010, Harms and Harms 2012, Heatley et al. 2013). 

This study aims to assess the health of free living passerines in southern Texas via select 

venous blood analytes, and by including life history traits (migration), locale, 

seasonality, and other intrinsic variables as covariates. I also compare my results from 

southern Texas to similar data collected from birds occupying a distinctly different 

habitat in Central Texas.  

 I hypothesize that sedentary and migratory bird blood analytes will differ based 

on the physiological needs of migration. I further hypothesize that differences amongst 

analytes of birds from East Foundation ranches, and between South and Central Texas 

will be minimal and generally reflective of good health. Finding significant differences 

of these hematological parameters could be important to the larger scheme of 

understanding free-living passerine health and their interaction with environmental 

conditions. Should venous blood analytes of sedentary avian species be altered by local 

factors in healthy ecosystems, they could represent good local bioindicators of their 

ecosystem.  

II.2 Materials and Methods 

Field Sampling 

 Passerine birds (Table 1, Table 2) were sampled on East Foundation lands (Fig. 

1) from March 2014 to November 2015. Specific East Foundation lands included San 
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Antonio Viejo Ranch (located inland, in Jim Hogg and Starr Counties) and, El Sauz 

Ranch (located coastally in Kenedy and Willacy Counties: Fig. 1). Birds were captured 

via mist net and placed in cloth bags for a short period, allowing them to calm before 

sampling occurred. Birds were restrained by hand for collection of 0.2-0.5 mL of blood 

via jugular venipuncture with needle and syringe. Blood samples were transferred to 

lithium heparin microtubes (Terumo America Inc, Elkton, MD, USA) to prevent 

clotting.  

Table 1. Summary of the 238 passerines sampled for hematology on East Foundation 

ranches in South Texas. 

 

 

 

 

 

 

 

 

 

Family Total Males Females Adult First Year 

Cardinalidae 72 37 34 38 12 

Emberizidae 20 8 5 11 2 

Fringillidae 3 2 1 1 2 

Icteridae 36 10 18 17 5 

Mimidae 25 3 4 7 6 

Paridae 5 2 2 4 1 

Parulidae 51 14 22 28 9 

Troglodytidae 4 2 1 3 0 

Turdidae 2 0 2 2 0 

Tyrannidae 13 3 4 8 1 

Vireonidae 7 1 2 3 1 

El Sauz Ranch 194 71 72 99 24 

San Antonio Viejo Ranch 44 11 23 23 12 

Total 238 82 95 122 36 
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Table 2. Migratory and Sedentary birds from East Foundation ranches sampled for blood gas and electrolytes. 

Migratory                                                                      

N=128 

Sedentary                                                                      

N=110 

Baltimore Oriole (Icterus galbula) Audubon's oriole (Icterus graduacauda) 

Bay Breasted Warbler (Setophaga castanea) Bewick's wren (Thryomanes bewickii) 

Black and white Warbler (Mniotilta varia) Black crested titmouse (Baeolophus atricristatus) 

Black throated green Warbler (Setophaga virens) Bronzed cowbird (Molothrus aeneus) 

Blue Grosbeak (Passerina caerulea) Brown headed cowbird (Molothrus ater) 

Blue headed vireo (Vireo solitarius) Common yellowthroat (Geothlypis trichas) 

Brown Crested flycatcher (Myiarchus tyrannulus) Couch's kingbird (Tyrannus couchii) 

Canada warbler (Cardellina canadensis) Curve billed thrasher (Toxostoma curvirostre) 

Clay colored sparrow (Spizella pallida) Great kiskadee (Pitangus sulphuratus) 

Dickcissel (Spiza americana) Lark sparrow (Chondestes grammacus) 

Eastern Phoebe (Sayornis phoebe) Lesser goldfinch (Spinus psaltria) 

Gray catbird (Dumetella carolinensis) Long billed thrasher (Toxostoma longirostre) 

Gray cheeked thrush (Catharus minimus) Northern Cardinal (Cardinalis cardinalis) 

Great crested flycatcher (Myiarchus crinitus) Norther mockingbird (Mimus polyglottos) 

Golden winged warbler (Vermivora chrysoptera) Olive sparrow (Arremenops rufivirgatus) 

Hooded oriole (Icterus cucullatus) Pyrrhuloxia (Cardinalis sinuatus) 
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Table 2. Continued  

Migratory                                                                      

N=128 

Sedentary                                                                      

N=110 

House Wren (Troglodytes aedon) Red winged blackbird (Agelaius phoeniceus) 

Indigo bunting (Passerina cyanea) White eyed vireo (Vireo griseus) 

Lincoln's sparrow (Melospiza lincolnii)  

Louisiana Waterthrush (Parkesia motacilla)  

Magnolia Warbler (Setophaga magnolia)  

Nashville warbler (Leiothlypis ruficapilla) 

Northern Waterthrush (Parkesia noveboracensis)  

Orange crowned warbler (Leiothypis celata)  

Painted bunting (Passerina ciris)  

Scarlet tanager (Piranga olivacea)  

Scissor tailed flycatcher (Tyrannus forficatus)  

Summer tanager (Piranga rubra)  

Swainson's thrush (Catharus ustulatus)  

Tennessee warbler (Oreothlypis peregrina)  

Warbling vireo (Vireo gilvus)  

Willow flycatcher (Empidonax traillii)  

Worm eating warbler (Helmitheros vermivorum)  
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Table 2. Continued  

Migratory                                                                      

N=128 

Sedentary                                                                      

N=110 

Yellow breasted chat (Icteria virens)  

Yellow warbler (Setophaga petechia)  
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Figure 1. Sampling localities for birds included in this study. The red rectangle outlines 

the East Foundation properties with San Antonio Viejo (SAV) and El Sauz (ES) ranches 

noted. The blue rectangle outlines counties on the Central Texas, from which birds from 

a previous study (Heatley et al. 2013) are used for analyte comparisons to South Texas. 
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Sample Analysis 

 Blood sample analysis occurred within 5 minutes of sample collection using a 

handheld point of care analyzer, iSTAT-1® system (Abbott Laboratories. Abbott Park, 

IL, USA). Blood sample analysis was performed with the blood gas cartridge (CG4+ or 

CG8+) first, followed by the Chem 8 cartridge. Venous blood values (iSTAT-1® system 

manual 2012) were determined for the following analytes: pH, pCO2 (carbon dioxide 

partial pressure), pO2 (oxygen partial pressure), lactate, bicarbonate, total CO2, base 

excess, sO2 (dissolved oxygen), ionized calcium, glucose, blood urea nitrogen (BUN), 

hematocrit, hemoglobin, sodium, potassium, and chloride. The iSTAT-1® system 

measures most values directly, but total CO2, base excess, hemoglobin, and sO2 are 

calculated. Blood samples were loaded into ammonium heparin microhematocrit 

(Drummond Scientific Co, Broomall, PA, USA) capillary tubes and centrifuged (Clay-

Adams, Inc. New York, USA) at 13,000 g for 5 minutes within 24 hours of collection to 

access packed cell volume. A physical examination and assignment of body condition 

score (BCS) was performed on each bird after blood collection (Manual of Exotic Pet 

Practice 2009). The body condition was scored on a scale of 1-4 by assessing the mass of 

the pectoral muscle and fat located on the chest, with BCS 1 being the lowest condition 

score and BCS 4 the highest. Scoring was performed by using the thumb and fore finger 

to palpate muscle along the keel, examining the contour of the breast muscle. In this 

technique, higher body condition scores are representative of better health. After 

sampling, some birds were humanely sacrificed via thoracic compression and prepared 

as voucher specimens for the Biodiversity Teaching and Research Collection at Texas 
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A&M University, while other birds released back to the ecosystem. Intrinsic variables 

such as species, sex, and age were recorded in the field, if possible, by external field 

markings and confirmed during specimen preparation. Migratory or sedentary status was 

assigned using life history information (Guide to Birds of North America 2011).  

Statistical Methods 

 Analysis of the data was performed using Analyse-it for Microsoft Excel® 

statistical software (version 2.20 Microsoft Office 2010, Analyse-it® Software Ltd, 

http://www. analyse-it.com/, 2009). Normality for each analyte was assessed by 

histogram and Shapiro-Wilk test (P>0.05). The effects of migratory status, BCS, age, 

sex, season (fall, spring, or summer), and locality were evaluated using Student’s t-test 

(P<0.05) for parametric data and by Kruskal-Wallis test (P<0.05) nonparametric data. 

Season and BCS were assessed using a one-way analysis of variance (P<0.05). The 

effect of species was also measured using a one-way analysis of variance for five 

sedentary species from South and Central Texas, that had a minimum of 10 individuals 

sampled. Five sedentary species, for a total of 108 birds (Table 3) were sampled from 

these two ecosystems. A Bland-Altman plot was constructed to assess the agreement 

between measurement of packed cell volume by centrifugation and hematocrit by the 

iSTAT-1®. For all statistical analysis except determination of normality (P >0.05) 

significance was accepted at P<0.05.  
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II.3 Results 

East Foundation Passeriformes 

 A total of 238 passerines were sampled from East Foundation Lands, comprising 

12 families, 52 species, and representing both migratory and sedentary life histories 

(Tables 1 and 2). Analyte data from birds captured on both ranches from South Texas 

had parametric distribution for nine analytes and, non-parametric distribution for eight 

analytes (Table 4). Bird sex was determined for only 177 individuals (82 males, 95 

females) based on lack of sexually dimorphic field markings in combination with release 

of the bird post blood collection. Female birds had increased concentrations (all values 

to be read as mean ± standard deviation) of ionized calcium (0.964 ± 0.017 mg/dl) 

compared to males (0.918 ± 0.018 mg/dl: P=0.0515). Age classifications (adult and first 

year) were determined for 145 birds based on field markings and assessment of skull 

ossification during the museum preparation. Total carbon dioxide concentrations were 

significantly decreased in first year birds (22.5 ± 17.5 mmol/L) compared to adults (24.5 

± 20.9 mmol/L: P=0.0352). 
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Table 3. Numbers of specimens of five sedentary species selected from Central Texas 

and South Texas. 

 

 

 

 

 

Species Central Texas South Texas Total 

Bewick's Wren 7 3 10 

Black-crested Titmouse 14 5 19 

Northern Cardinal 7 39 46 

Northern Mockingbird 1 20 21 

White-eyed Vireo 5 8 13 
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Table 4. Blood gas and electrolyte intervals from passeriformes sampled in South Texas. 

Analyte Units Birds 

sampled 

Mean 95% CI P value 

pH* pH 222 7.659 7.644-7.673 0.0187 

pCO2 mm Hg 222 20.7 20.0-21.5 0.5626 

pO2* mm Hg 225 54.1 51.2-57.0 <0.0001 

Base excess mmol/L 226 2.6 1.9-3.2 0.1475 

Bicarbonate mmol/L 225 23.1 22.5-23.7 0.7881 

TCO2 mmol/L 202 23.7 23.1-24.3 0.3259 

sO2* % 226 90.4 89.5-91.3 <0.0001 

Lactate* mmol/L 83 4.47 4.12-4.82 <0.0001 

Glucose mg/dl 200 330.2 319.6-340.8 0.0728 

BUN* mg/dl 9 3.9 2.8-4.9 0.0032 

Sodium mmol/L 203 155.7 155.1-156.3 0.0651 

Potassium* mmol/L 202 4.2 4.0-4.3 <0.0001 

Chloride mmol/L 80 122.6 121.6-123.6 0.3084 

iCa mg/dl 169 0.956 0.937-0.975 0.343 

Hct* % 203 39.9 39.3-40.7 0.0133 

Hgb* g/dl 203 13.6 13.3-13.8 <0.0001 

PCV* % 231 47.0 46.1-47.8 0.0002 

 

 With respect to life history differences migratory birds had increased 

concentrations of pO2, hematocrit, and hemoglobin as compared to sedentary birds, 

whereas sodium and ionized calcium concentrations were decreased in migratory birds 

(Table 5). Samples collected in the fall had relatively increased values for pH, pO2, sO2, 

and lower concentrations of pCO2 and lactate than those obtained in spring or summer 
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(Table 6). Additionally, chloride concentrations were higher (P=0.04) in fall than in 

spring. Ionized calcium concentrations were increased in summer compared to spring 

and potassium concentrations were relatively decreased during the summer (Table 6). 

All birds were issued a body condition score (BCS; range from 1-4), with most birds 

assigned a BCS of 2 or 3. For BCS 3 birds I found an increase in pCO2 (P=0.0050) but a 

decrease in pO2 (P=0.0534), percent sO2 (P=0.0162), chloride (P=0.0202), and ionized 

calcium, as compared to BCS 2 birds.  

 

Table 5. Venous blood analytes of passerine birds that differ based on life history 

strategy (migratory v sedentary) collected from East Foundation properties.  

Analyte Units N Migratory Sedentary P value 

pO2* mm Hg 225 56.8, (±2.2), 123 51.0, (±1.9), 102 0.0506  

Sodium mmol/L 203 155.2, (±0.4), 109 156.4, (±0.4), 94 0.0370  

iCa mg/dl 169 0.922, (±0.014), 79 0.986, (±0.013), 90 0.0008  

Hct* % 203 40.94, (±0.48), 109 38.84, (±0.53), 94 0.0011  

Hgb* g/dl 203 13.9, (±0.18), 109 13.2, (±0.18), 94 0.0011  

Glucose mg/dl 200 342.9, (±7.8), 107 315.8, (±7.0), 93 0.0119  

All values given as mean, (standard error), individuals sampled. 

p value represents Students t-test; those denoted * are non-normally distributed where p 

represents Kruskal-Wallis test.
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Table 6. Effect of seasonality on venous blood analytes from passerine birds sampled on East Foundation properties. 

All values given as mean (95% confidence interval) individuals sampled. 

iCa P value represents Student t-test. 

Analyte Units N Fall Spring Summer P value 

pH* pH 222 7.747, (7.708-7.788), 24 7.648, (7.631-7.665), 166 7.647, (7.618-7.678), 32 <.0001 

pCO2 mm Hg 225 15.14, (13.36-16.91), 26 21.47, (20.61-22.34), 167 21.34, (19.60-23.09), 32 <.0001 

pO2* mm Hg 225 77.6, (66.2-89.0), 26 52.2, (49.0-55.3), 167 45.3, (42.2-48.4), 32 <.0001 

sO2* % 226 97.0, (95.8-98.3), 27 89.6, (88.6-90.7), 167 88.8, (86.8-90.8), 32 <.0001 

Lactate* mmol/L 83  3.89, (3.47-4.30), 26 4.93, (4.24-5.63), 25 4.57, (3.92-5.23), 32 0.008 

Potassium* mmol/L 202  4.37, (4.05-4.68), 28 4.20, (4.07-4.33), 146 3.61, (3.34-3.88), 28 0.0055 

iCa mg/dl 169 ----- 0.941, (0.920-0.963), 141 1.047, (1.008-1.086), 28 0.0007 
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 The Bland-Altman plot showed fair agreement between the measurement of 

packed cell volume by centrifugation and hematocrit by the iSTAT-1®, based on criteria 

from Rettenmund et al. (2014). Packed cell volume differed from the iSTAT-1® 

measurement by, on average, seven percent. 

Sedentary Passeriformes 

 When migrants were excluded from the analysis few hematologic parameters 

differed in samples obtained from coastal versus inland properties in southern Texas. 

Blood samples obtained from birds on El Sauz Ranch (coastal) had lower decreased 

concentrations for TCO2 (P=0.0025) and ionized calcium (P<0.0001), while blood 

samples of birds captured on the San Antonio Viejo Ranch (inland) had relatively higher 

glucose concentrations (P=0.0346). 

South Texas versus Central Texas Comparisons 

 To assess whether habitat drives variation in analytes, the data from select 

sedentary birds sampled in South Texas (East Foundation properties) were analyzed in 

conjunction with data from a previous study in which birds were sampled from the 

ecologically and elevational different Edward's Plateau in Central Texas (Fig. 1: Heatley 

et al. 2013). Sex was determined for 74 individuals: 39 males and 35 females. Within the 

sedentary species’ blood analytes collectively, sex effect was not found for any of the 

tested analytes or hematology values. Seasonality was evaluated for spring and summer, 

with fall being excluded based on lack of data (just 3 samples). Electrolytes, blood gases, 

lactate and hematology parameters were not affected by season. A decrease of pH 
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(P=0.0359) and base excess (P=0.0159) values occurred in summer compared to spring. 

Species affected base excess, sO2, glucose, sodium, and ionized calcium. Notably, many 

analytes differed based on locality. As compared to Central Texas birds, samples 

collected in South Texas showed decreased pH values and decreased concentrations of 

HCO3, pCO2, TCO2, glucose, ionized calcium, hematocrit, hemoglobin. South Texas 

birds also showed an increased pO2 and sO2 (Table 7)
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 Table 7. Venous blood analyte differences in passerine birds captured in Central Texas and in South Texas. 

 

 

 

 

 

 

 

 

 

All values given as mean, (95% confidence interval), individuals sampled. 

P value represents Students t-test; those denoted * are non-normally distributed where P represents Kruskal-Wallis test 

Analyte Units N Central Texas South Texas Pvalue 

pH pH 94 7.593, (7.560-7.626), 28 7.672, (7.646-7.698), 66 <0.0001 

pCO2 mm Hg 94 25.11, (23.15-27.08), 28 19.54, (18.19-20.89), 66 <0.0001 

pO2* mm Hg 93 38.1, (35.7-40.4), 28 51.3, (46.4-56.2), 65 <0.0001 

Bicarbonate mmol/L 94 23.95, (22.69-25.21), 28 21.79, (20.69-22.89), 66 0.024 

TCO2 mmol/L 97 24.7, (23.4-26.0), 28 22.7, (21.8-23.6), 69 0.0261 

sO2* % 93 81.3, (78.5-84.0), 28 90.2, (88.6-91.8), 65 <0.0001 

iCa mg/dl 65 1.074, (0.977-1.172), 9 0.970, (0.937-1.003), 56 0.0237 

Glucose mg/dl 86 374.8, (350.0-399.6), 28 299.6, (282.9-316.2), 58 <0.0001 

Hgb* g/dl 90 14.2, (13.7-14.6), 31 12.8, (12.4-13.2), 59 <0.0001 

Hct* % 90 41.7, (40.4-42.9), 31 37.6, (36.5-38.8), 59 <0.0001 
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II.4 Discussion 

East Foundation Passeriformes 

 Several other studies have assessed venous blood gases in free living birds using 

a point of care analyzer. Reviewing Table 3, the analytes reported here are similar to 

previous literature and indicate healthy values ( Paula et al. 2008, Harms and Harms 

2012, Heatley et al. 2013, Heatley et al. 2015). Many similar studies have used a 

temperature correction formula to represent their data.  The necessity of performing this 

temperature correction is controversial (Cowley et al. 2013); I did not obtain body 

temperature data and were not able to perform this correction.  

 The measurement method of hematocrit by iSTAT-1® or packed cell volume by 

centrifugation can be interchangeable because most points fall within the 95% limits of 

agreement. I attribute the differences that occur to human error when processing and 

measuring the microhematocrit tubes. 

 Sex and age had minimal impact on most analytes I assessed in this study. 

Female birds had increased blood concentrations of ionized calcium compared to males, 

which is in agreement with previous research (Howard et al. 2004). Ionized calcium 

plays an important role in many physiological processes, to include eggshell 

calcification. Therefore, the increased demands for ionized calcium expected during 

ovulation (de Matos 2008) could explain the relatively increased concentrations I 

observed in female birds. First year birds exhibited lower total CO2 than adults possibly 
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based on a lack of endurance and increased effort to maintain flight in inexperienced 

juveniles (Heatley et al. 2013). 

 The increased hematocrit and hemoglobin concentrations found in migratory 

birds were expected based on reports in other passerine species ( Barlein and Totzke 

1992, Morton 1994, Piersma and Everaarts 1996). Migration is an energetically taxing 

activity for birds which increases the need for oxygen, subsequently increasing 

hematocrit and hemoglobin (Swanson 1990, Barlein and Totzke 1992, Hõrak et al. 

1998). The need for increased blood oxygen during migration was also associated with 

increased oxygen saturation and partial pressures of oxygen (pO2). Several factors can 

influence pO2 values such as cardiac function, tissue metabolic rate, hematocrit, or 

cellular oxygen use (Swanson 1990, Barlein and Totzke 1992, Heatley et al. 2013). 

Decreased sodium concentrations might be explained by the birds’ water consumption. 

While at stop over sites or reaching the final destination of their migration (i.e. when 

they were sampled), birds could be consuming extraordinary amounts of water which 

dilutes blood plasma and decreases sodium concentrations (Pierce and McWilliams 

2004). Lower ionized calcium concentrations from migratory species may stem from the 

role calcium has in the muscular work of respiration and prolonged flight. Expected 

glucose concentrations for passerines via the iSTAT-1® have been recorded to be 

around 300 mg/dL ( Fokidis et al. 2011, Heatley et al. 2013), which is similar to glucose 

concentrations determined in this study. During migration, birds must rely on fat 

reserves for energy. Increases of glucagon facilitate metabolism of fat deposits and 

increases the amount of blood glucose concentrations (Barlein and Totzke 1992). This 
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appears to be a seasonal change that occurs before migration and can still be observed 

even after prolonged flight. This suggest migratory birds captured at the South Texas 

sites are not exhausting all their nutrients and have adequate glucose reserves. This 

process might precisely explain the relatively increased glucose concentrations I 

observed in migratory birds.  

 BCS of 2 may have experienced greater physical exertion than BCS 3 birds. 

Decreased BCS score in birds has been associated with smaller pectoralis muscle and fat 

reserves (Gregory and Robins 1998). The blood oxygen and carbon dioxide interaction 

values could be indicating an acute tissue hypoxia that reduces pectoral muscle mass and 

justifies the original body score.  

 Both Central and South Texas commonly experience extreme weather condition 

variation during the year. One of these noticeable changes is seen during the spring and 

summer months, where there is a high increase in ambient temperatures as compared to 

fall months. In the spring and summer months, temperature in South and Central Texas 

routinely exceed 40°C and 35°C respectively. During this transition to higher 

temperatures, it takes approximately two weeks of heat exposure and conditioning for 

birds to regulate their bodies’ acid-base homeostasis (Marder 1990). Increased PCO2, 

blood lactate concentration, and a more acidic venous blood pH can be associated with 

higher ambient temperatures and the birds response environmental stress (Levine 1975). 

Handling stress in this study may have resulted in relative respiratory acidosis of birds 

sampled during the hotter summer months.  Nutrient variability is likely to vary 
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seasonally. Nutrients from cacti and other woody plants from South Texas contain 

enough potassium to satisfy the dietary needs for avian activity during the harsh 

environmental conditions in the summer months (Everitt and Alaniz 1981). Since 

potassium appears available in the environment and accessible through dietary intake, 

the relatively lower concentrations of potassium, chloride, ionized calcium in birds from 

South Texas ranches might indicate relative euhydration/hyperhydration (Heatley et al. 

2013). There are multiple methods to assess hydration status such as measuring total 

solids, pack cell volume, total protein, skin turgor, but these objectives were beyond the 

scope of this study. However, none of the analytes I recorded were clinically abnormal 

or lower than expected in a healthy bird.  

 Throughout the year, Passeriformes may exhibit differing needs of oxygen 

demands based on changing environmental conditions. During times of the year when 

ambient temperature is much cooler, increased oxygen need may be based on metabolic 

processes (shivering) to stay warm. Decreased concentrations of lactate from birds 

sampled in fall suggest decreased anaerobic metabolic processes (Swanson 1991). Blood 

samples of birds in fall exhibited no change in hematocrit or hemoglobin which suggests 

a functional change of oxygen affinity at the tissue level or lack of need in sea level non-

migratory species in relatively warm ambient temperatures (Swanson 1990). A 

mechanism to satisfy the oxygen needs of hypoxic tissue might involve an accumulation 

of localized hemoglobin acting as a larger molecule and increasing oxygen saturation 

(Lapennas and Reeves 1983). Birds sampled in fall appear to handle changes in oxygen 

requirements similar to those previously recorded in other passerines (Swanson 1990).  
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 The differences amongst East Foundation ranches was minimal and may be 

explained as birds adapting to their specific ecosystem.  With one coastal ranch and the 

other more inland, the changes in electrolytes observed could indicate differing 

ecosystem acclimation at the same latitude. Overall, the blood gas data suggests the 

values observed within the sampling of the East Foundation properties, may be 

indicators of reasonable passerine health in the ecoregion.  

Sedentary Passeriformes 

 Assessment of blood analytes from sedentary birds from the East Foundation and 

Central Texas failed to demonstrate expected changes in hematocrit and hemoglobin 

based on sex (Archawaranon 2005, Norte et al. 2009, Heatley et al. 2013). The decrease 

of pH and base excess in sedentary species sampled during summer months may 

represent metabolic acidosis, most likely based on the birds’ response to handling stress 

during high ambient temperatures. The results that were seen when combining the 

Central Texas and South Texas sedentary bird species were similar to those seen 

previously on and off the Edward's Plateau. Glucose, ionized calcium, pH, hematocrit, 

and hemoglobin were values that were not changed and may exhibit normal levels for 

Central Texas (Heatley et al. 2015).  

 When select sedentary species were tested against each other based on geography 

(South versus Central Texas), most blood gas and hematology was not different. The 

significant parameters that were seen are most likely based on differences in dietary need 

or other physiological adaptations (Heatley et al. 2013). This suggests that sedentary 
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species from each region have adapted to their ecosystem. Each ecosystem may be host 

to many unique physiological adaptations by their sedentary bird species. Each locality, 

though different, harbors healthy bird communities. This data suggests that rather than a 

single bird species, there is potential to use a community of birds as bioindicators of 

ecosystem health. 

 This study was designed to assess the health of birds in South Texas using 

multiple venous blood analytes and compare them to other ecoregions. I also 

investigated the differences in blood physiology associated with migration. Migratory 

birds’ venous blood analytes differed from sedentary species, particularly those 

associated with oxygen transport and capacity. Venous blood analytes of non-migratory 

passeriformes of most apparent use as bioindicators include lactate, electrolyte 

concentrations and blood gases. Sedentary species are advantageous as bioindicators as 

they directly reflect the year-round adaptations needed to survive in their ecosystem.  As 

many analytes I studied appear similar in the sedentary species from Central Texas and 

South Texas, I suggest that sedentary birds, on a macro level, are similar and adapted to 

the local environmental stresses of their habitat. I find on a macro level of ecosystems; 

sedentary birds differ greatly in hematology from both locations.  

 Although the iSTAT-1® was a useful field tool to assess venous blood analytes 

from birds at the time of sampling, it does have limitations. Overfill, underfill and other 

reasons for cartridge failure were not uncommon, and has been documented in other 

studies. I observed 32 percent failure rate which is higher than previously recorded 
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(Rettenmund et al. 2014). The most common failure I observed dealt with poor contact 

between the analyzer and cartridge, dirty contact pads on cartridges or dirty connector in 

the analyzer, and temperature (Table 8). The poor contact and dirty components of the 

cartridge and analyzer are likely associated with sand and other debris in the air, which 

are common to South Texas habitats. Further, the analyzer is sensitive to ambient 

temperature and would fail if not maintained within 26-30°C, allowing for a limited 

working window for my studies in South Texas where temperatures over 40°C are 

common. Based on my findings I suggest that future research areas of passerine birds 

and ecosystem health would be best focused on sedentary avian communities to assess 

local ecosystem health and develop a more comprehensive baseline of hematology 

parameters.  
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CHAPTER III 

ASSESSMENT OF AVIAN CHEWING LICE (INSECTA: PHTHIRAPTERA) FROM 

SOUTH TEXAS BIRDS 

III.1 Introduction 

 Chewing lice (Insecta: Phthiraptera) are small, dorsoventrally flattened 

ectoparasites found on numerous avian species and some mammalian species (Johnson 

and Clayton 2003, Price et al. 2003). Chewing lice are placed into two suborders: 

Amblycera and Ischnocera, both of which feed on feathers and dead skin while some 

amblycerans also feed on blood or secretions (Waterhouse 1953). Each suborder is 

characterized by distinctive morphologies, and partition the body based on feeding 

strategy and host preening avoidance (Johnson et al. 2012). These are obligate parasites 

that spend their entire life cycle on their host (Marshal 1981, Catanach and Johnson 

2015). However, chewing lice have two main methods of transport among hosts: vertical 

transmission, by direct contact with another individual, and horizontal transmission via 

phoresis, described as "hitchhiking" on hippoboscid flies (Keirans 1975, Johnson and 

Clayton 2003, Bartlow et al. 2016). Although phoresis is not common, it is more 

frequently used by ischnoceran lice than amblyceran lice (Johnson and Clayton 2003, 

Bartlow et al. 2016). This method of transmission allows lice to escape competition from 

other lice on the same host and potentially encounter a novel host (Harbison et al. 2009). 

One louse species or even an entire louse genus may be either host specific or a host 

generalist. Host generalist lice have the potential to parasitize multiple host species over 
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a large geographic area, which can lead to many interesting questions about the 

distributions and host associations of these lice.  

 Several studies have investigated the louse-host associations from select avian 

species North America. For example, ectoparasites from Wild turkey (Meleagris 

gallopavo) in California (Lane et al. 2006), community structure of lice on the Western 

scrub jay (Aphelocoma californica) in the Southwestern United States (Bush et al. 2009), 

phylogenetic relationships of lice on Catharus thrushes in Illinois (Bueter et al. 2009), 

and louse-host associations of select dove species in Manitoba, Canada (Galloway and 

Palma 2008) have been examined. With the exception of a few studies examining 

populations genetics, parasitism rates, and host switching of lice parasitizing doves 

(Johnson et al. 2002a,  Moyer et al. 2002, Bush and Clayton 2006), there have been few 

studies that have examined louse relationships in Texas. Texas, not unlike Mexico and 

Central America, is an understudied area with respect to louse-host associations. Several 

studies have been examined co-evolutionary processes and speciation of lice parasitizing 

birds in Mexico, but limited to doves species (Johnson et al. 2002a, Clayton and Johnson 

2003, Malenke et al. 2003) . For example, only a few studies from Costa Rica (Lindell et 

al. 2002, Sychra et al. 2010, Kounek et al. 2011) and Panama (Price and Johnson 2009) 

exist, that provide descriptions of new louse species. Many questions remain unanswered 

about biogeography, louse distributions and genetic relationships of lice across a 

significant portion of the New World. The objectives of this study were to assess louse 

diversity, louse-host associations, and to construct molecular phylogenies of lice to 

determine relationships of lineages of lice collected from birds surveyed in South Texas 
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to those described elsewhere. To accomplish this, I attempted collection of lice from 

approximately 450 birds during a biodiversity assessment of several private ranches in 

\South Texas. These birds represent a diverse subset of species from the area, and 

include both sedentary and migratory species. I hypothesize that I will find several novel 

louse-host associations and unique genetic lineages that could potentially represent new 

species of lice, based on lack of investigation in this area of Texas. Further, microclimate 

differences related to temperature and humidity are thought to affect louse parasitism 

rates (Moyer et al. 2002). Therefore, I hypothesize there will be different levels of 

parasitism between sampling localities, given the different microclimates associated with 

each.  

III.2 Materials and Methods 

Louse Sampling and Examination 

 Lice were collected from birds intermittently between 2013-2015 on East 

Foundation ranches located in southern Texas (Figure 2). The East Foundation 

properties occupy approximately 88221 hectares of land in Jim Hogg, Starr, Willacy, 

and Kenedy Counties. For this study, samples were obtained from San Antonio Viejo 

Ranch (60179 hectares, located inland in Jim Hogg and Starr Counties) and El Sauz 

Ranch (11082 hectares, located coastally in Kenedy and Willacy Counties: Figure 2). 

Four biomes are represented among the two ranches: grassland, shrubland, woodland, 

and wetland. At San Antonio Viejo arrowfeather threeawn (Aristida purpurescens) 

dominates the grassland biome, hogplum (Colubrina texensis) and blackbrush (Acacia 
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rigidula) dominate shrubland, and mesquite (Prosopis sp.) dominates the woodland 

biome. At El Sauz gulf cordgrass (Spartina spartinae) dominates the grassland biome, 

lotebush (Ziziphus obtusifolia) dominates shrubland, mesquite (Prosopis sp.) dominates 

woodland, and marshhay cordgrass (Spartina patens) dominates the wetland biome. 

Birds were captured in the field via mist net. Some birds were sacrificed, and prepared as 

voucher specimens to be deposited at the Biodiversity Research and Teaching 

Collections located at Texas A&M University, while other birds were released. In both 

instances, birds were ruffled for lice. Ruffling is a method of louse collection in which a 

toothbrush is used to thoroughly brush the feathers over collecting paper (Clayton et al. 

1992, Clayton and Drown 2001). For birds that were sacrificed, prior to ruffling, each 

was put into its' own individual bag with a cotton ball dipped in ethyl acetate, which acts 

as fumigation to release the lice from their host (Clayton and Drown 2001). Those birds 

not collected were dusted with flea powder (Zodiac®, Schaumburg, IL, USA) to aid in 

releasing ectoparasites from their plumage and ruffled prior to release (Walther and 

Clayton 1997). After lice were collected from a bird, they were stored either dry or in 

ethanol, at -80°C. Lice were identified to genus (when possible) using published 

dichotomous keys (Price et al., 2003). Digital vouchers were created before DNA 

extraction for each louse by using an Olympus SZX10 microscope, Intralux 6000 light 

source and SPOT v4.6 software (2009 Diagnostic Instruments).
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Figure 2. Map of Texas with emphasis of South Texas and all East Foundation 

properties, sampling locations of San Antonio Viejo and El Sauz. 

 

 

DNA Extraction, Amplification, and Sequencing 

 DNA extraction was performed using the E.Z.N.A® Tissue DNA Kit (Omega 

Bio-Tek Inc., Norcross, Georgia, USA) following louse specific protocols (Cruickshank 

et al. 2001). Before the extraction process began, the lice were washed in 1X phosphate-

buffered saline solution to remove possible contaminants from the specimen. After the 

wash, the louse specimen's abdomen was sliced using a sterile surgical blade. The 

manufacturer's extraction protocol was followed throughout the process, except the total 
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DNA elution volume was lowered to 70 µL. Upon completion of DNA extraction, each 

louse exoskeleton was preserved in ethanol and stored at -80°C to be retained as a 

voucher specimen. 

 Polymerase chain reaction (PCR) was performed on all lice to amplify a portion 

of the mitochondrial cytochrome c oxidase subunit I (COI) gene, using the primers 

L6625 and H7005 (Hafner et al. 1994). Each PCR reaction consisted of 25 µL solution 

containing 10 µL Emerald Master Mix (Takara Bio Inc.), 12 µL water, 1 µL forward 

primer (10 µM concentration), 1 µL reverse primer (10 µM concentration), and 1 µL 

DNA. The amplification protocol started with 5 minutes of denaturation at 94°C, 

followed by 40 cycles of denaturation at 94°C for 45 seconds, annealing at 44°C for 55 

seconds, extension at 72°C for 1 minutes and final elongation at 72°C for 5 minutes 

(Light et al. 2016). The amplified PCR products were electrophoresed with 2 µL of 

100bp Promega DNA ladder (Applied Biosystems) on an agarose gel to determine PCR 

success.  

 Successfully amplified PCR products were purified using ExoSAP-IT (United 

States Biochemical Corporation, Cleveland, Ohio, USA). The cleaned PCR products 

were sent to Beckman-Coulter Genomics (Danvers, Maryland, USA) or Yale University 

(New Haven, Connecticut, USA) for sequencing in both forward and reverse direction 

using the PCR primers. Forward and reverse strands were combined and sequences were 

edited using Sequencher v.4.2.2 (Gene Codes Corporation, Ann Arbor, Michigan, USA), 

aligned using MUSCLE (Edgar 2004), verified by eye. 
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Data Analysis 

 Each louse sequence was compared to published sequences located on GenBank 

by using the Basic Local Alignment Search Tool (BLAST). Closely related sequences 

resulting from the BLAST search were added to the data set for phylogenetic analyses 

(Table 8). Phylogenetic analysis occurred in two separate analyses, one for the suborder 

Amblycera and one for the suborder Ischnocera. Each analysis used two specimens from 

the louse suborder Anoplura as outgroups (Haematopinus eurysterunus and 

Fahrenholzia zacatecae; GenBank numbers HM171422 and HM171445, respectively). 

ParitionFinder v1.1.1 (Lanfear et al. 2012) was used with the Bayesian information 

criterion to select the appropriate number of partitions and model of evolution at each 

partition. For analyses of both Amblycera and Ischnocera, 3 partitions were identified as 

HKY+G, GRT+I+G, and GTR+I+G for the first, second, and third codon positions 

respectively. Bayesian phylogenetic analyses were performed using MrBayes 3.2 

(Ronquist et al. 2012). Bayesian analysis for each suborder consisted of 2 simultaneous 

runs for 10 million generations with four heated chains (Ronquist and Huelsenbeck 

2003) and sampling occurred every 2000 generations with a 25% burn-in. Each 

independent run was assessed for convergence using Tracer v1.6 (Rambaut et al. 2014). 

A 50% majority rule consensus tree was constructed in FigTree v1.4.2 (Rambaut 2014) 

and the percentage of samples recovered in a particular clade was assumed to represent 

that clade's posterior probability (Huelsenbeck and Ronquist 2001). Average uncorrected 

p-distances were calculated in PAUP* v 4.0 (Swofford 2002) to examine genetic 

difference among taxa. 
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Table 8. Louse GenBank sequences that were included in the Bayesian analysis with South Texas sequences. Host species and 

collection locality data were recorded if known. 

Louse species Louse Host Collection Locatility GenBank Accesion No. 

Amblycera Taxa    

Hohorstiella passerinae Columbina passerina USA AF545716 

Menacanthus camelinus Lanius collurio Costa Rica KJ730544 

Menacanthus eurysternus Tanagera dowii Costa Rica KJ730661 

Menacanthus eurysternus Turdus grayi Costa Rica KJ730647 

Menacanthus sp. Attila spadiceus  Costa Rica AF545726 

Myrsidea cruickshanki Tanagera dowii Panama GQ454449 

Myrsidea fusca Ramphocelus passerinii Panama FJ171267 

Myrsidea incerta Catharus minimus USA (Illinois) FJ171270 

Myrsidea incerta Catharus ustulatus USA (Illinois) FJ171268 

Myrsidea nesomimi Mimus parvulus Ecuador JF734299 

Myrsidea sp. Hylocichla mustelina USA (Illinois) FJ171284 

Myrsidea sp. Psilorhinus morio Mexico FJ171281 

Myrsidea sp. Seiurus aurocapilla USA (Illinois) FJ171289 

Myrsidea sp. Troglodytes aedon Panama KF614514 

Myrsidea simplex  Catharus fuscater Panama FJ171276 

Myrsidea textoris Ploceus velatus South Africa KF768814 

Ricinus mugimaki Cossypha dichroa South Africa KF768816 

Ricinus sp. Cyanocompsa parellina  AF385014 

    

Ischnocera Taxa    

Anaticola crassicornis Anas crecca  KT587831 
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Table 8. Continued  

    

Louse species Louse Host Collection Locatility GenBank Accesion No. 

Brueelia anamariae  Troglodytes aedon USA (Illinois) FJ171220 

Brueelia antiqua Hylocichla mustelina USA (Illinois) FJ171222 

Brueelia brunneinucha Dumatella carolinensis USA (Illinois) FJ171223 

Brueelia cedrorum  Bombycilla cedrorum USA KT892073 

Brueelia deficiens Aphelocoma califonica USA KT892285 

Brueelia dorsale Toxostoma rufum USA (Illinois) FJ171224 

Brueelia iliaci Turdus migratorius USA KT892078 

Brueelia ornatissima Agelaius phoeniceus USA KT892090 

Brueelia ornatissima Molothrus ater USA KT892087 

Brueelia pallidula  Pheucticus ludovianus USA KT892089 

Brueelia picturata Sturnella sp.  USA KT892320 

Brueelia sp. Cardellina canadensis USA KT892275 

Brueelia sp. Carduelis pinus USA KT892116 

Brueelia sp. Sialia currucoides USA KT892319 

Brueelia sp. Dolichonyx oryzivorus USA (Illinois) FJ171230 

Brueelia sp Melanerpes cruentatus  KT892195 

Brueelia sp. Melanerpes erythrocephalus USA KT892330 

Brueelia sp. Melospia lincolnii USA KT892201 

Brueelia sp. Melanerpes carolinus USA KT892329 

Brueelia vulgata  Zonotrichia albicollis USA (Illinois) FJ171234 

Brueelia xanthocephali Xanthocephalus xanthocephalus USA KT892325 

Columbicola passerinae Columbina passerina Texas AF414730 

Columbicola passerinae Columbina passerina Mexico AF414728 

Columbicola macrourae  Zenaida macroura USA FJ656460 
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Table 8. continued 

 

Louse species Louse Host Collection Locatility GenBank Accesion No. 

Cotingacola stotzi Querula purpurata Brazil JN662444 

Cuculoecus sp. Cerococcyx olivinus Africa KU187329 

Cummingsiella longirostricola Numernius americanus USA JN900159 

Degeeriella fulva Buteo regalis  AF444861 

Goinodes sp. Callipepla californica USA AF545708 

Lunaceps actophilus  Calidris alba USA (Florida) JN900147 

Penenirmus auritus Mecopicos poertae Africa AF356701 

Penenirmus sp. Psaltiparus minimus USA (Utah) AY149409 

Philopterus sp. Motmotus momota Brazil AF356716 

Philopterus sp.  Spizella pusilla USA KF841436 

Picicola faucetti Galbula cyanicollis Brazil EF101571 

Picicola galbulica Galbula tombacea Peru EF101575 

Picicola snodgrassi Melanerpes carolinus USA AF444868 

Picicola striata Monasa nigrifrons Bolivia EF101577 

Picicola oneilli Notharchus macrorhynchos Peru EF101573 

Trogoninirmus sp. Trogon melanocephalus Mexico AF444876 

    

Outgroup Taxa    

Fahrenholzia zacatecae Chaetodipus eremicus   HM171445 

Haematopinus eurysterunus Bos sp.  HM171422 
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III.3 Results 

 A total of 446 bird specimens from 2 sampling localities in South Texas were 

examined for ectoparasites (data available upon request). The host specimens examined 

were taxonomically diverse, representing a total of 156 species, 40 families, and 16 

orders. Of these taxonomic categories, 28.8%, 50.0%, and 50.0%, were parasitized by 

ectoparasites, respectively. There were 164 birds collected from San Antonio Viejo 

ranch, of which 14.0% were parasitized, and 282 birds collected from El Sauz, of which 

16.7% parasitized (Table 9). In total, 70 birds examined were parasitized by lice (15.5%) 

and 64 host associations were recorded, with 31 of these associations being new to 

science (Table 10). There were multiple instances (13) where a host species was 

parasitized by more than one species of louse (Table 10).  Lice from both suborders were 

found to be parasitizing the same host specimen 5 times and parasitizing the same host 

species 8 times. It is possible there could be additional host associations but some louse 

specimens were excluded due to problems identifying them. These problems include 

poor reference material or poor condition of specimens. 
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Table 9. Species of birds that were parasitized by chewing lice in South Texas from the two sampling localities: El Sauz and 

San Antonio Viejo ranches during 2013-2015, where (n) is total number of host species examined. 

El Sauz 

Species (n) 

San Antonio Viejo 

Species (n) 

Northern shoveler (Anas clypeata) Red-winged blackbird (Agelaius phoeniceus) (4) 

Black-crested titmouse (Baeolophus atricristatus) Verdin (Auriparus flaviceps) 

Sanderling (Calidris alba) Cactus wren (Campylorhynchus brunneicapillus) 

Northern cardinal (Cardinalis cardinalis) (6) Northern cardinal (Cardinalis cardinalis) 

Lark sparrow (Chondestes grammacus) Yellow-billed cuckoo (Coccyzus americanus) 

Northern bobwhite (Colinus virginianus) American Kestrel (Falco sparverius) 

Common ground dove (Columbina passerina) Audubon's oriole (Icterus graduacauda) 

Green jay (Cyanocorax yncas) (2) Tennessee warbler (Oreothlypis peregrina) 

Horned lark (Eremophila alpestris) Golden-fronted woodpecker (Melanerpes aurifrons) 

Hooded oriole (Icterus cucullatus) Northern mockingbird (Mimus polyglottos) 

Lincoln's sparrow (Melospiza lincolnii) Bronzed cowbird (Molothrus aeneaus) 
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Table 9. Continued  

El Sauz 

Species (n) 

San Antonio Viejo 

Species (n) 

Black and white warbler (Mniotilta varia) Varied bunting (Passerina versicolor) 

Bronzed cowbird (Molothrus aeneaus) (2) Cassin's sparrow (Pecaea cassini) 

Brown-headed cowbird (Molothrus ater) Vermillion flycatcher (Pyrocephalus rubinus) 

Brown-crested flycatcher (Myiarchus tyrannulus) Eastern meadowlark (Sturnella magna) 

Long-billed curlew (Numenius americanus) Curve-billed thrasher (Toxostoma curvirostre) (2) 

Harris's hawk (Parabuteo unicinctus) Long-billed thrasher (Toxostoma longirostre) 

Louisiana waterthrush (Parkesia motacilla) (2) Bell's vireo (Vireo bellii) 

Northern waterthrush (Parkesia noeboracensis)  

Summer tanager (Piranga rubra) (2)  

Northern parula (Setophaga americana)  

Black-throated green warbler (Setophaga virens)  

Lesser goldfinch (Spinus psaltria) (2)  
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Table 9. Continued  

El Sauz 

Species (n) 

San Antonio Viejo 

Species (n) 

Long-billed thrasher (Toxostoma longirostre) (2)  

House wren (Troglodytes aedon)  

Scissor-tailed flycatcher (Tyrannus forficatus)  

Golden-winged warbler (Vermivora chrysoptera)  

White-eyed vireo (Vireo griseus) 

White-tailed hawk (Geranoaetus albicaudatus)  

Mourning dove (Zenaida macroura)  
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Table 10. Louse-host associations of birds from South Texas during 2013-2015 where (n) is number of host species examined. 

Daggers (†) indicate new host associations and asteriks (*) indicate species with no molecular data. 

Host Family Host Species (n) 

Louse 

Suborder Louse Family Louse sample 

Host Order: Accipitriformes     

Accipitridae Parabuteo unicinctus Ischnocera Philopteridae Degeeriella fulva † 

  Geranoaetus albicaudatus Ischnocera Philopteridae Philopterus sp. † * 

Host Order: Anseriformes     

Anatidae Anas clypeata Ischnocera Philopteridae Anaticola crassicornis 

  Ischnocera Philopteridae Anatoecus sp. 

Host Order: Charadriformes     

Scolopacidae Calidris alba Ischnocera Philopteridae Lunaceps actophilus 

 Numenius americanus Ischnocera Philopteridae Cummingsiella longirostricola 

Host Order: Columbiformes     

Columbidae Columbina passerina Ischnocera Philopteridae Columbicola passerinae 

  Amblycera Menopidae Hohorstiella passerinae 

 Zenaida asiatica Ischnocera Philopteridae Columbicola macrourae 
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Table 10. Continued     

Host Family Host Species (n) 

Louse 

Suborder Louse Family Louse Sample 

Odontophoridae Colinus virginianus Ischnocera Goniodidae Goniodes sp. * 

Host Order: Cuculiformes     

Cuculidae Coccyzus americanus Ischnocera Philopteridae Cuculoecus sp. * 

Host Order: Falconiformes     

Falconidae Falco sparverius Ischnocera Philopteridae Degeeriella fulva 

Host Order: Passeriformes     

Alaudidae Eremophila alprestris Amblycera Menopidae Menacanthus sp. †* 

Cardinalidae Cardinalis cardinalis (7) Amblycera Menopidae Menacanthus eurysternus 

  Amblycera Menopidae Myrsidea sp. † 

  Ischnocera Menopidae Brueelia pallidula † 

 Passerina ciris Amblycera Menopidae Myrsidea sp. † * 

  Ischnocera Philopteridae Philopterus sp. † * 

 Passerina versicolor Amblycera Ricinidae  Ricinus sp. 

 Piranga rubra (2) Ischnocera Philopteridae Philopterus sp. † * 

  Amblycera Menopidae Myrsidea sp. † * 

Corvidae Cyanocorax yncas (2) Amblycera Menopidae Myrsidea sp. † * 

  Amblycera Menopidae Menacanthus sp. 

  Ischnocera Philopteridae Philopterus sp. † * 
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Table 10. Continued     

Host Family Host Species (n) 

Louse 

Suborder Louse Family Louse Sample 

Emberizidae Chondestes grammacus Amblycera Menopidae Myrsidea sp. † * 

 Melospiza lincolnii Ischnocera Philopteridae Brueelia sp. 

 Pecaea cassinii Ischnocera Philopteridae Philopterus sp. † * 

Fringillidae Spinus psaltria (2) Ischnocera Philopteridae Philopterus sp. † * 

  Amblycera Ricinidae  Ricinus sp. * 

Iceteridae Agelaius phoeniceus (4) Ischnocera Philopteridae Brueelia xanthocephali 

  Amblycera Menopidae Myrsidea sp. † * 

  Amblycera Menopidae Myrsidea sp. † * 

  Ischnocera Philopteridae Philopterus sp. * 

 Icterus cucullatus Amblycera Menopidae Menacanthus sp. † 

  Ischnocera Philopteridae Philopterus sp. † * 

 Icterus graduacauda Ischnocera Philopteridae Brueelia vulgata 

 Molothrus aeneaus (3) Ischnocera Philopteridae Brueelia xanthocephali 

 Molothrus ater (2) Ischnocera Philopteridae Brueelia xanthocephali 

  Amblycera Menopidae Myrsidea sp. 

 Sturnella magna Ischnocera Philopteridae Brueelia picturata 

Mimidae Mimus polyglottos (6) Ischnocera Philopteridae Brueelia brunneinucha 

  Amblycera Menopidae Myrsidea sp. † * 
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Table 10. Continued     

Host Family Host Species (n) 

Louse 

Suborder Louse Family Louse Sample 

  Ischnocera Philopteridae Philopterus sp. * 

 Toxostoma curvirostre Ischnocera Philopteridae Brueelia dorsale 

 Toxostoma longirostre (5) Ischnocera Philopteridae Brueelia dorsale † 

  Ischnocera Philopteridae Brueelia brunneinucha † 

  Ischnocera Philopteridae Philopterus sp. † * 

Paridae Baeolophus atricristatus Amblycera Menopidae Myrsidea sp. † * 

Parulidae Mniotilta varia Ischnocera Philopteridae Philopterus sp. † * 

 Oreothlypis peregrina Amblycera Ricinidae  Ricinus sp. * 

 Parkesia noveboracensis Amblycera Ricinidae  Ricinus sp. * 

 Parkesia motacilla (2) Amblycera Menopidae Myrsidea sp. * 

 Setophaga americana Amblycera Menopidae Menacanthus sp. † * 

 Setophaga virens Amblycera Menopidae Myrsidea sp. † 

 Vermivora chrysoptera Amblycera Ricinidae  Ricinus sp. † * 

Remizidae Auriparus flaviceps Ischnocera Philopteridae Brueelia sp. * 

Troglodytidae 

Campylorhynchus 

brunneicapillus Ischnocera Philopteridae Brueelia dorsale † 

 Troglodytes aedon Amblycera Menopidae Myrsidea sp. 

Tyrannidae  Myiarchus tyrannulus  Amblycera Menopidae Menacanthus sp. † * 
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Table 10. Continued      

Host Family Host Species (n) 

Louse 

Suborder Louse Family  Louse Sample 

 Pyrocephalus rubinus Amblycera Ricinidae  Ricinus sp. 

 Tyrannus forficatus Ischnocera Philopteridae Picicola sp. * 

Vireonidae Vireo griseus Ischnocera Philopteridae Brueelia dorsale † 

 Vireo bellii Ischnocera Philopteridae Brueelia sp. † * 

     

Host Order: Piciformes     

Picidae Melanerpes aurifrons Ischnocera Philopteridae Penenirmus sp. * 

  Ischnocera Philopteridae Picicola snodgrassi 
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 There were a total of 150 louse specimens included in the phylogenetic analysis, 

81 specimens (34 Amblycera and 47 Ischnocera) from South Texas and 69 (20 

Amblycera and 49 Ischnocera) from GenBank (Figures 2 and 3, Table 2). There were 

high average pairwise sequence divergences (uncorrected p-distances) within each 

suborder. Across amblyceran taxa the average uncorrected p-distance was 23.3% with a 

range of 0-35.7%. Across ischnoceran taxa the average uncorrected p-distance was 

26.1% with a range of 0-37.3%. From this study, there were 27 unique genetic lineages 

(15 from Ischnocera and 12 from Amblycera) being approximately 15% genetically 

divergent (uncorrected p-distance) from their closest relative (Figures 3 and 4).     

 Phylogenetic analysis of the Amblyceran taxa resulted in 3 clades with strong 

Bayesian posterior probability (PP) support; each clade circumscribes a major louse 

genus (Figure 3). Myrsidea had the strongest support (PP=1), and the Ricinus and 

Menacanthus were strongly supported as well (PP=0.99). Support for relationships 

within each clade varied. In Menacanthus and Ricinus, more relationships were strongly 

supported. However, most relationships within Myrsidea were poorly supported 

effectively resulting in a major polytomy within this genus. The analysis also included 

the amblyceran genus Hohorstiella, which was placed as sister Menacanthus. However, 

this relationship was poorly supported (PP=0.73).  
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Figure 3. Phylogeny of amblyceran taxa from South Texas constructed using Bayesian 

analysis. Posterior probabilities ≥0.90 are shown and sequences grayed out are from 

GenBank. Unique genetic lineages are denoted with asteriks (*).
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Figure 4. Phylogeny of ischnoceran taxa from South Texas constructed using Bayesian 

analysis. Posterior probabilities ≥0.90 are shown and sequences grayed out are from 

GenBank. Unique genetic lineages are denoted with asteriks (*).
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 Analysis of the ischnoceran suborder revealed several well supported clades 

(Figure 4). The louse genera Columbicola, Anaticola, and Anatoecus were recovered 

together in a clade, with moderate support (PP=0.94).  The Degeeriella complex, 

comprised the genera Degeeriella, Picicola, Trogoninirmus, and Contingacola, also 

strongly supported (PP=1). Within this clade, intergeneric relationships were not 

strongly supported and Picicola was not recovered as monophyletic. Members of the 

louse genera Cummingsiella, Lunaceps, Penenirmus (not recovered as monophyletic), 

Cuculoecus and Goinodes comprised a poorly supported sister clade to Philopterus. 

While Philopterus was strongly supported (PP=0.99), the relationships within the genus 

were not. The same is true for the largest ischnoceran clade comprised members of the 

hyper-diverse genus Brueelia; this clade was strongly supported (PP=1) however, 

support for relationships within the clade was lacking. 

III.4 Discussion 

 The findings of this study were not consistent with the extraordinarily high 

parasitism rate of 60% or more observed in other studies (Lindell et al. 2002, 

Szczykutowicz et al. 2005); instead I found a parasitism rate of 15.5%. This could be 

attributed to abiotic factors, such as climate. There is strong evidence that shows that 

aridity could be a driving variable in reducing the amount of louse parasitism rates 

among birds inhabiting arid environments (Moyer et al. 2002). The area of South Texas 

where sampling occurred, has been described as semi-arid habitat that can be heavily 

influenced by long periods of drought (Hernandez and Uddameri 2013). Indeed, during 
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the first year of my work, South Texas was at the tail end of a two year drought event. 

The average precipitation during those years was approximately 334 millimeters per year 

as compared to the 536 millimeters average precipitation per year recorded in the area 

from 1981-2010; provided by PRISM Climate Group, Oregon State University, 

(http://prism.oregonstate.edu). 

 When individual sampling areas were compared (San Antonio Viejo, which is 

arid and inland versus El Sauz, which is humid and coastal), there was little difference in 

louse parasitism rates. This is likely the due to the South Texas climate heavily 

influencing overall parasitism rates rather than the microclimates between areas, 

although the aforementioned drought cycle may have obscured any potential differences 

related to microclimate. However, birds sampled from the El Sauz ranch were more 

heavily parasitized based on the number of lice obtained from each bird from San 

Antonio Viejo. Rather than finding 1-3 lice per host from San Antonio Viejo, birds from 

El Sauz were more than often parasitized with 5 or more, with as many as 40 lice per 

host individual.  

 Within the amblyceran tree, there are 7 unique genetic lineages of Myrsidea 

(Figure 3). The genus Myrsidea is the most speciose genus in Phthiraptera, with 350 

described species and new species frequently being described (e.g. Price and Dalgleish 

2007, Palma and Price 2010, Valim and Weckstein 2013). High divergence was recorded 

in the louse collected from the Green jay (Cyanocorax yncas, 19.3% uncorrected p-

distance) compared to its closest genetic relative, which parasitized the Brown jay 
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(Psilorhinus morio) from Mexico, which has a similar distribution and belongs to the 

same family (Corvidae) as the Green jay. While this is a unique lineage, it is also a novel 

host association, which strengthens the potential of this being a species new to science. 

A similar divergence (18.7% uncorrected p-distance) was recorded from the louse 

parasitizing the Black-crested titmouse (Baeolophus atricristatus) as compared to the 

louse species parasitizing House wren (Troglodytes aedon), Red-winged blackbird 

(Agelaius phoeniceus), and Lark sparrow (Chondestes grammacus). Additionally, the 

lice on these three hosts (House wren, Red-winged blackbird, and Lark sparrow) were on 

average 16.1% genetically different (uncorrected p-distance) than their closest genetic 

relative from GenBank. All of these represent novel host associations, excluding the 

House wren. The lice parasitizing the 5 Northern cardinals (Cardinalis cardinalis) and 

Black-throated green warbler (Setophaga virens) were genetically similar (on average 

1.8% uncorrected p-distance). Collectively, the lice species parasitizing this group of 

hosts, represent two novel host associations and were 11.9% divergent (uncorrected p-

distance) from Myrsidea pricei. A unique genetic lineage (on average 15.4%  

uncorrected p-distance) from its closest relatives and novel host association was found 

from the Myrsidea louse parasitizing the Painted bunting (Passerina ciris). The 

Myrsidea sp. parasitizing the Summer tanager (Piranga rubra) is a novel host association 

and was 14.5% genetically different than Myrsidea cruickshanki that was found 

parasitizing Spangle-cheeked tanager (Tangara dowii). The lice collected from Northern 

mockingbirds (Mimus polyglottos) are on average 14.4% genetically different from the 

closest GenBank sequence (Myrsidea nesomimi) collected from the Galapagos 
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mockingbird (Mimus parvulus). With such a high amount of genetic divergence and 

being a novel host association, this louse is likely representative of a new species. 

Notably, a previous phylogenetic study concluded the Galapagos mockingbird’s closest 

relative is a member of the North American mockingbird family, Mimidae (Arbogast et 

al. 2006). This could be an example where we see the host phylogeny and louse 

phylogeny co-evolving. Finally within the Myrsidea, there is an interesting relationship 

with the louse Myrsidea textoris. This louse has not been recorded anywhere except 

Africa, yet two separate hosts (Agelaius phoeniceus and Molothrus ater) from South 

Texas were likely parasitized by this louse species based on an average 4.9% genetic 

divergence (uncorrected p-distance) from the GenBank Myrsidea textoris. This suggests 

an intercontinental distribution for this louse species. 

 The Ricinus lice that parasitized the Golden-winged warbler (Vermivora 

chrysoptera), Tennessee warbler (Oreothlypis peregrina), Northern waterthrush 

(Parkesia motacilla), and Lesser goldfinch (Spinus psaltria) formed one clade that are 

on average 11.1-14.1% genetically different from each other. This same clade is on 

average 16.7% genetically different from the other species within the Ricinus clade. 

When looking at known louse-host associations, different species of Ricinus are known 

to parasitize each of those host species within this study. Therefore, we could be 

molecularly identifying three separate Ricinus species within this clade (based on genetic 

divergences, the Tennessee warbler and Northern waterthrush are likely parasitized by 

the same louse species). There is a known host association of Ricinus picturatus 

parasitizing members from the genus Vermivora. It is possible that the new host 
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association recorded for the Golden-winged warbler could be representative of this 

particular species of Ricinus. 

 In the Menacanthus clade lice that parasitized Green jay (Cyanocorax yncas) and 

Hooded oriole (Icterus cucullatus) were almost identical genetically (average 

uncorrected p-distance 0.2%) to the GenBank Menacanthus sp. from Bright-rumped 

attila (Attila spadiceus): these likely represent the same species. This Menacanthus 

subclade genetically differed on average 16.9% from the Menacanthus sp. parasitizing 

the Great-crested flycatcher (Myiarchus crinitus). Based on the amount of divergence 

and a novel host association, this flycatcher louse is likely a new species. The Clay-

colored thrush (Turdis grayi) and Spangle-cheeked Tanager (Tanager dowii) are hosts to 

Menacanthus eurysternus. A louse specimen collected from a Northern cardinal 

(Cardinalis cardinalis) was genetically similar to Menacanthus eurysternus (1.4% 

uncorrected p-distance). The lice from Northern parula (Setophaga americana) and 

Horned Lark (Eremophila alpestris) are on average 11.2% divergent from Menacanthus 

eurysternus, and 6% divergent from each other; both of these represent novel host 

associations. Between these five host species, there is considerable species distribution 

overlap with Central America. Notably, Menacanthus eurysternus complex is a widely 

distributed louse species, parasitizing numerous host families and species (Price 1976), 

and is likely a complex of multiple species.  Although there are two novel host 

associations with a unique genetic lineage within this complex, additional morphological 

and probable molecular work is needed to support the individual lice as possible new 

species. 
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 Within the ischnoceran clade, I found 15 genetically unique lineages as 

compared to GenBank sequences (Figure 4). This is not particularly novel as numerous 

ischnoceran species and host associations are being discovered and described from 

around the world (Najer et al. 2014, Moodi et al 2013, Valim and Palma 2015, Valim 

and Kuabara 2015). However, these new descriptions often come from areas that are 

traditionally understudied in terms of host and louse diversity. The fact that there are 15 

unique lineages from the United States is a bit surprising; nine of these come from one 

genus and four are known louse-host associations with a lack of genetic reference 

material. The Penenirmus collected from the Golden-fronted woodpecker (Melanerpes 

aurifrons) was highly supported as sister to a louse collected from another Picidae 

species, African gray woodpecker (Mesopicos goertae). The Penenirmus louse from the 

Golden-fronted woodpecker was significantly divergent (21.3% uncorrected p-distance) 

from the African gray woodpecker and 24.5% divergent from the Penenirmus louse from 

the passerine bird, Bush tit (Psaltriparus minimus). My results support previous 

literature finding a lack of monophyly for Penenirmus (Johnson et al. 2001), while 

showing two distinct clades based on host association, one from order Piciformes and 

one from order Passeriformes.   

 All Brueelia in this study were genetically identical or nearly identical to 

sequences obtained from GenBank, with the exception of two specimens (Figure 4). The 

two exceptions were collected from a Verdin (Auriparus flaviceps) and Bell's vireo 

(Vireo bellii), and they are 23.9% and 24.3% different from the nearest GenBank match, 

respectively. These unique genetic lineages coupled with novel host associations, reveal 
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a strong possibility of new species within Brueelia. There have been numerous studies 

over the past few years that have focused efforts on collecting Brueelia sp. and using 

molecular analysis to resolve the Brueelia complex, and most recently Bush et al. (2016) 

recognizing this group to as paraphyletic. My results show this genus is monophyletic, 

but this is likely due to a small sample size for the group. This genus is one of the largest 

groups within ischnocera containing over 260 described species of which roughly 90% 

are host specific (Johnson et al. 2002b) and my phylogeny reflects host specificity of 

certain species. For example, the bird family Mimidae was only parasitized by one 

species, likely B. brunneinucha based on genetic divergence from the GenBank 

specimen. This louse species targets other mimids as well, with previously described 

associations of B. brunneinucha with Tropical mockingbird (Mimus gilvus), Blue and 

white mockingbird (Melanotis hypoleucus), and Bahama mockingbird (Mimus 

gundlachii: Cicchino 1986). Another example of host specificity in Brueelia applies to 

B. xanthocephali and B. ornatissima exclusively parasitize members of family Icteridae 

(Figure 3). However, there is also a group of hosts that appear to be parasitized by a non-

host specific louse, B. dorsale (species identification based on genetic similarity with the 

GenBank specimen). I identified this louse parasitizing four different host species from 

three different families (Figure 4). Interestingly, these four host species all inhabit 

southern Texas thorn-scrub habitat, suggesting that B. dorsale is an opportunistic 

parasite within that habitat. This study reiterates what Johnson et al. (2002b) suggests 

regarding Brueelia having members host specific and host generalist. 
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 The genus Philopterus is effectively a large polytomy with a high amount of 

divergence (average uncorrected p-distance 20.7%) among lineages (Figure 4). As such, 

it is difficult to determine relationships. This difficulty is exacerbated by the general lack 

of genetic references on GenBank. One well supported group (PP=1) within Philopterus 

consisted of three individuals that average 23.8% divergence from the rest of the 

lineages in this clade. These three individuals parasitized three separate hosts 

(Toxostoma longirostre, Geranoaetus albicaudatus, and Passerina ciris). Unfortunately, 

as many of the samples in this clade were nymphs it was difficult to confidently identify 

them any further than to genus. Of the nine recorded unique lineages within this genus, 

seven are associated with novel host associations (Figure 4, Table 10). Most of the 

records detailing Philopterus and their host associations in North America are many 

decades old (Geist 1935, Peters 1936) and therefore based on morphology. In general, 

there is little recent information about the genus with the exception of Price et al. (2003) 

and Bush et al. (2009) who provided a distribution of a Philopterus crassipes 

parasitizing the Western scrub jay (Aphelcoma californica).    

 A well supported clade that is referred to as the Degeeriella complex Clay (1958) 

was recovered within the ischnoceran phylogeny. This clade is often defined as being 

strongly supported based on morphology and as having high Bayesian support among 

lineages, although many genera within this group are paraphyletic (Johnson et al. 2002c, 

Johnson et al. 2008). Similar results were seen in this study as the genus Picicola was 

paraphyletic (Figure 4). While Picicola is known to parasitize the Scissor-tailed 

flycatcher (Tyrannus forficatus), molecular data demonstrating this association is not 
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available. Therefore, I report here new molecular information about this host association 

and possibly a new species should the louse from this study be found to be 

morphologically different from the louse identified in the original louse-host association. 

Also within this complex, I discovered as one new louse-host association of Degeeriella 

fulva parasitizing the American Kestrel (Falco sparverius). 

 This study was designed to assess the diversity of lice from host associations and 

at the molecular level from a largely underexplored region in the United States. 

Although my sampling was relatively small (446 hosts), I still report 31 new louse-host 

associations, and 12 amblyceran and 15 ischnoceran genetically unique lineages that are 

new species to GenBank and possibly new to science. Future studies in Texas should 

increase sampling localities throughout the state and to other unrepresented regions (e.g. 

neighboring states or Mexico) to expand our knowledge of host associations, determine 

louse distributions, and host specificity (or lack thereof). This knowledge will allow 

broader studies of biogeography, and the ability to identify possible underlying causes of 

louse distributions, such as climate or ecological variation. 
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CHAPTER IV 

SUMMARY 

 A portion of this study was to assess the health of birds in South Texas using 

multiple venous blood analytes and compare them to other ecoregions. Also, investigate 

the differences in blood physiology associated with migration. Migratory birds’ venous 

blood analytes differed from sedentary species, particularly those associated with oxygen 

transport and capacity. Sedentary species are advantageous as bioindicators as they 

directly reflect the year-round adaptations needed to survive in their ecosystem. As many 

analytes we studied appear similar in the sedentary species from Central Texas and 

South Texas, we suggest that sedentary birds, on a macro level, are similar and adapted 

to the local environmental stresses of their habitat. We find on a macro level of 

ecosystems; sedentary birds differ greatly in hematology from both locations, which 

suggests that rather than a single bird species, there is potential to use a community of 

birds as bioindicators of ecosystem health. 

 The second portion of this study was assess the avian chewing louse diversity 

from birds in South Texas. This study recorded a large number of new louse-host 

associations (31) and unique genetic louse lineages (27). The amount of novel host 

association found in this area is not surprising given that the studies involving louse-host 

relationships in Texas are limited to dove species (Johnson et al. 2002a,  Moyer et al. 

2002, Bush and Clayton 2006). Finding so many unique lineages was very surprising 

since North America is thought to be so well studied, but if we look at genetic lineages 
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and known host associations there are only 10 unique genetic lineages that correspond 

with novel host associations. Collectively, this study expands the louse literature and has 

implications for future research in this area.  
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