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Abstract

Background: The influence of vegetative changes due to livestock grazing on grassland birds is well-recognized
because these birds are heavily influenced by vegetative structure. Traditionally, species distribution models (SDMs)
use direct variables, resources that the animal consumes or requires to persist in an area (e.g., water) to define and
project a species’ niche and distribution. Indirect variables, which are features the animal does not consume or
require for persistence but with which it may still interact, are often excluded. Our objective was to improve the
traditional SDMs projecting the distribution of three summer resident South Texas grassland birds (Northern
Bobwhite Colinus virginianus, Eastern Meadowlark Sturnella magna, and Cassin’s Sparrow Peucaea cassinii) by
incorporating livestock grazing pressure, an indirect variable, into five SDM algorithms: BioClim, generalized linear
model, MaxEnt, boosted regression tree, and random forest. We collected data from the Coloraditas Grazing
Research and Demonstration Area (CGRDA), a 7684-ha area located on the San Antonio Viejo Ranch (SAV) in South
Texas. We used several relevant environmental characteristics to build SDMs and compared model performance
(AUC and TSS) with and without grazing pressure as an indirect variable.

Results: Machine learning models (MaxEnt and random forest) had the highest predictive performance for all
species, with random forest being the most consistent for each analysis. BioClim and generalized linear model
remained constant or only marginally improved with the addition of the grazing pressure.

Conclusions: Our findings suggest that model selection for SDM should include consideration of species
prevalence, and machine-learning algorithms should be preferred when the target species is of low or unknown
prevalence. Further, livestock grazing has measurable influence on grassland bird species’ distributions and should
be included in SDMs as an indirect variable in addition to associated vegetative changes.
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Background
Domestic livestock is recognized ecosystem engineers in
semi-arid rangelands, where they directly and indirectly
alter the availability of resources to a wide range of
grassland-associated organisms (Derner et al. 2009). Sev-
eral studies cite the influence of vegetative changes due
to livestock grazing on breeding grassland birds since
this species group is heavily influenced by vegetative

structure (Askins et al. 2007; Brennan and Kuvlesky Jr
2005; Fuhlendorf et al. 2006; Jansen et al. 1999). Grazing
pressure has historically been difficult to quantify due to
variable plant responses to grazing and movements of
livestock within pastures (Landsberg and Crowley 2004).
However, a review of the effects of water-place distribu-
tion on rangelands suggested that distances from water
sources (e.g., livestock tanks and troughs) can provide
valuable context for interpreting changes in grazed land-
scapes particularly in areas remote from water sources
(James et al. 1999; Landsberg and Crowley 2004; Ludwig
et al. 2000). In South Texas, water sources are scarce.
Specifically, the Coastal Sand Plain region of Texas has
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no natural permanent bodies of freshwater making live-
stock wells and holding tanks supplied by active ranch-
ing operations the only water source for domestic
livestock and, thus, it is reasonable to expect water
points to have a substantial impact on the distribution
and intensity of localized grazing (Fulbright et al. 1990;
Snelgrove et al. 2013).
Grassland bird populations have experienced precipi-

tous declines on a continental scale over the last few de-
cades (Brennan and Kuvlesky Jr 2005; Nocera and
Koslowsky 2011). Although agricultural and livestock
operations dominate the South Texas landscape,
wildlife-related recreation has become increasingly im-
portant to landowners because of the associated eco-
nomic value (Dodd 2009; TPWD 2016). For example,
landowners can anticipate an average gross profit of
$4.69 per hectare for a deer or exotic ungulate hunting
lease and can expect an average gross profit of $20.99
per hectare for a quail (e.g., Northern Bobwhite Colinus
virginianus and Scaled Quail Callipepla squamata)
hunting lease (TPWD 2017). This area also provides cru-
cial resources for other migratory and resident grassland
birds (e.g., Cassin’s Sparrow Aimophila cassinii, Grass-
hopper Sparrow Ammodramus savannarum, and Dick-
sissel Spiza americana) that have declined throughout
their ranges due to land use and climate change since
1966 (Brennan and Kuvlesky Jr 2005; Knopf 1994). It is
essential we advance our understanding of how grass-
land birds are affected by their environment, inclusive of
both their requirements to persist (i.e., resources), and
how they interact with environmental features or biotic
influences.
Traditionally, species distribution models (SDMs),

which statistically associate a species’ occurrence with
a suite of geospatial predictors, use direct variables,
resources that the animal consumes or requires to
persist in an area (e.g., shrub density and water avail-
ability) to define and project a species’ niche and dis-
tribution (Austin and Van Niel 2011; Elith and
Leathwick 2009). Indirect variables, which are features
the animal does not consume or require for persist-
ence but with which it may still interact (e.g., compe-
tition and commensalism), are often excluded in
SDMs due to the difficulty in identifying the variable
ecologically, quantifying the relationship, or in man-
aging collinearity issues adding an interaction factor
to a traditional SDM framework may contribute
(Atauchi et al. 2018; Leach et al. 2016; Austin and
Van Niel 2011). However, recent advances in machine
learning algorithms (e.g., random forest) have enabled
us to include indirect variables, such as grazing pres-
sure, in SDMs that may have more complicated rela-
tionships with the distribution of the target species
than traditional resource variables (Miller 2010).

Our objective was to (1) improve traditional SDMs
projecting the distribution of three summer resident
South Texas grassland birds (Northern Bobwhite Colinus
virginianus, Eastern Meadowlark Sturnella magna, and
Cassin’s Sparrow Peucaea cassinii) by incorporating live-
stock grazing pressure, an indirect variable, and (2) in-
terpret the possible effect of grazing pressure on bird
distribution per each SDM approach. We used a novel
approach to spatially quantify localized grazing pressure
to include this variable using five SDM algorithms: Bio-
Clim, generalized linear model, MaxEnt, boosted regres-
sion tree, and random forest. Our approach serves as a
valuable tool for rangeland managers when the manage-
ment goal is to promote sustainable livestock grazing
and recreational wildlife harvest, while maintaining vi-
able nongame species.

Methods
Study site
The Coloraditas Grazing Research and Demonstration
Area (CGRDA) is a 7684-ha area located on the 60,000-
ha San Antonio Viejo Ranch (SAV) approximately 25 km
south of Hebbronville, Texas, in Jim Hogg and Starr
counties (Fig. 1). SAV is located within the South Texas
Plains ecoregion and is managed predominantly as a
cow-calf operation. Mean annual temperature within the
study site is 22.6 °C, and mean annual precipitation is
502.5 mm (PRISM Climate Group 2018). SAV is one of
six properties of the East Foundation that are managed
as a living laboratory to support wildlife conservation
and other public benefits of ranching and private land
stewardship. The CGRDA is the representative of South
Texas rangeland ecosystems and encompasses the
Coastal Sand Plain and Texas-Tamulipan Thronscrub
ecoregions. Low-growing woody plants, dense shrubs
(Prosopis glandulosa, Acacia greggii, Celtis ehrenbergi-
ana, Colubrina texensis, Aloysia gratissima, Lantana
urticoides), and cacti (Opuntia engelmannii var. lindhei-
meri, Opuntia leptocaulis) dominate the vegetation in
this area. The CGRDA is comprised of 10 pastures each
assigned to 1 of 4 grazing systems (Fig. 1). Four pastures
were assigned to a continuous grazing system with 2
pastures (Rodeo and Tia Nena) maintained under a high
stocking rate (1 Animal Unit [AU] /14 ha) and 2 pas-
tures (San Juan and Calichera) under a moderate stock-
ing rate (1 AU/20 ha). Six pastures were assigned to a
rotational system with 3 pastures, 1 herd maintained
under the high stocking rate (Coloraditas, Desiderio, and
Guadalupe units) and 3 pastures, and 1 herd maintained
under the moderate stocking rate (San Rafael, Loma,
and Tequileras units). Grazing was deferred on all pas-
tures for 2 years prior to the onset of livestock grazing
in December 2015.
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Environmental predictors
We used canopy height, shrub density, grass spp. cover-
age, cacti spp. coverage, and bare ground coverage re-
corded from ground surveys in 2016 as environmental
predictors in SDMs. We collected vegetation compos-
ition and structure data from 141 permanent 20-m tran-
sects in October 2016. We allocated transects
proportional to the area of ecological sites that occur in
each pasture using stratified sampling resulting in 12–16
transects per pasture (Bonham 2013). We marked each
transect start and collected data in a random, predeter-
mined direction (N, S, E, W). On each transect, we sam-
pled 5, 20 × 50 cm quadrats (5 m spacing) randomly
placed at either 0, 0.5, 1, 1.5, 2, or 2.5 m from the left
side of the tape and facing away from the transect start,
visually recording percent cover of woody, herbaceous
(later classified by grass spp.), and bare ground in each
quadrat.
We also documented woody canopy cover along each

of the 20-m transects by visually recording the amount
of the ground (in centimeters) covered by woody plant
materials (leaves and branches) and succulent (cacti)
that intercepted the line transect by species (Canfield
1941; Higgins et al. 1996). If a gap in the canopy
exceeded 0.5 m for an individual, we recorded separate
cover measurements. We calculated percent canopy
cover by summing the intercept measurements for an
individual species, dividing by total line length and con-
verting to a cover percentage. We calculated total

percent cover by adding cover percentages for all spe-
cies, which sometimes exceeded 100% when overlapping
canopies by different species were recorded (Coulloudon
et al. 1999).
Additionally, we used topographic relief (30-m2 reso-

lution) and Optimized Soil Adjusted Vegetation Index
(OSAVI, a measure of LAI) produced from remotely
sensed imagery collected during the same growing sea-
son as the ground surveys. We acquired one Landsat 8-
OLI tile (< 6% cloud cover) that encompassed the study
area (courtesy of U.S. Geological Survey) and processed
this in ENVI 5.1 (NASA Landsat Program 2016). We
corrected for atmospheric conditions and converted the
original image format of Digital Numbers (DN) to radi-
ance and then surface reflectance. We first resized the
image to the rectangular extent of the CGRDA pasture
complex and then extracted by the study area mask in
ESRI ArcGIS ArcMap 10.5. We then spatially subset the
extracted image by bands 2–5 corresponding to Landsat
8-OLI band designations: blue, green, red, and NIR.
Bands were stacked, and the OSAVI was calculated
using the band math tool in ENVI 5.1. This index for
LAI follows the standard formula [(NIR-Red)/(NIR +
Red+0.16)] and uses a reflectance constant of 0.16 to ad-
just for high background reflectance (e.g., areas with
sparse vegetation and high soil reflectance) (Rondeaux
et al. 1996). In South Texas, this vegetation index out-
performed other, more common vegetation indices (e.g.,
Normalized Difference Vegetation Index [NDVI]) in

Fig. 1 Locality and pasture composition of East Foundation’s Coloraditas Grazing Research and Demonstration Area (CGRDA). Four pastures were
assigned to a continuous grazing system with 2 pastures (Rodeo and Tia Nena) maintained under a high stocking rate (1 Animal Unit [AU]/14 ha)
and 2 pastures (San Juan and Calichera) under a moderate stocking rate (1 AU/20 ha). Six pastures were assigned to a rotational system with 3
pastures, 1 herd maintained under the high stocking rate (Coloraditas, Desiderio, and Guadalupe units) and 3 pastures, and 1 herd maintained
under the moderate stocking rate (San Rafael, Loma, and Tequileras units)
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overall image classification accuracy and herbaceous
coverage estimations (Fern et al. 2018).
Locations of water sources (e.g., livestock wells) within

the study site and cattle stocking rates were provided by
the East Foundation. To calculate water proximity, we
gridded the spatial extent of the CGRDA into a fishnet
(30-m2 resolution). We performed a proximity analysis
on each pixel centroid using the Near tool in ArcMap
10.5 to determine distance of each centroid to location
of nearest water source, usually a livestock well and
holding tank as no natural surface water exists within
the study site, and very little exists on the Coastal Sand
Plain region of Texas as a whole (Snelgrove et al. 2013).
We made considerations for seasonality as not all
groundwater pumps are operational year-round on large
South Texas cattle ranches and ensured only those wells
known to be active during the summer of 2016 (a total
of 399 wells) were used in the analysis.

Quantifying grazing pressure
Several studies have cited the strong, predictable rela-
tionship between localized grazing pressure and proxim-
ity to water sources, especially in semi-arid rangelands
(James et al. 1999; Landsberg and Crowley 2004; Loca-
telli et al. 2016; Ludwig et al. 2000). This spatially un-
even use of the pasture by the livestock is even visible in
satellite imagery as one study termed the zone of high
livestock impact attenuating away from each water point
(typically a livestock tank fed by a well) a “piosphere”
(Andrew 1988). Piospheres are areas of high “hoof-ac-
tion” and generally have higher accumulation of live-
stock feces, soil compaction, and defoliation (Andrew
and Lange 1986; Graetz and Ludwig 1976). Due to the
absence of natural water sources on the CGRDA, the
known stocking rates of each pasture, and the well-
documented relationship between localized grazing pres-
sure and water sources (livestock tanks and wells) in
semi-arid rangelands, we used water proximity to create
a surrogate index for localized grazing pressure.
We used the distance to the nearest water source (live-

stock tank) previously calculated by the proximity ana-
lysis and 30-m2 fishnet grid across the CGRDA. This
ensured that resulting surface value estimates were the
same spatial resolution as the other environmental ras-
ters. We multiplied the distance value (m) of each fish-
net pixel centroid by the density of grazing livestock
(i.e., stocking rate) in each pasture using the raster math
tool in ArcMap. A summary of all predictive layers in-
cluded in the SDMs is presented in Table 1.

Bird occurrence data
Avian point counts consisted of 10 12-point transects
(centrally located per pasture within the CGRDA). We
used point count data collected on the CGRDA from

April to June 2016 to build baseline SDMs. Each point
was located 400 m apart, and 2 observers recorded visual
and auditory occurrences of birds within 200 m of each
point simultaneously yet independently. We used occur-
rence records rather than abundance or density since
the distributional modeling algorithms required pres-
ence/absence or presence only data. We used a trad-
itional framework in which each occurrence was
counted as a “presence” record at each point, omitting
the duplicate records from the double observer design,
and disregarding the transect construct by subsampling
the data by a 400-m cell size. This granted us a finer
spatial resolution of the data set to thoroughly investi-
gate the impacts of grazing pressure on grassland bird
presence. We used only grassland-obligate species with
an adequate number presence records within the
CGRDA during the study period for distribution models:
Northern Bobwhite, Eastern Meadowlark, and Cassin’s
Sparrow.

Data processing and analyses
We imported values for each predictor (canopy height,
shrub density, bare ground coverage, grass spp. coverage,
cacti spp. coverage, water proximity, and grazing pres-
sure) into ArcMap 10.5 and used Kriging interpolation
to minimize spatial sampling bias and create continuous
surface layers of environmental predictor values. Kriging,
or Gaussian process regression, is a geostatistical
method through which interpolated values are modeled
by a Gaussian process governed by covariances. This
method of spatial interpolation estimates a continuous
surface of values directly based on values at surrounding
points weighted according to spatial covariance (Van
Beers and Kleijnen 2004). The Kriging interpolation al-
gorithm is optimal for most eco-spatial modeling be-
cause it produces an unbiased prediction and calculates
the spatial distribution of uncertainty allowing for an ac-
curate estimate of error at any particular point (Mah-
moudabadi and Briggs 2016). We exported the resulting

Table 1 Summary of predictor layers included in species
distribution models (SDMs)

Predictor Units

Canopy height Meters

Shrub density –

Grass spp. coverage Proportion (%)

Cacti spp. coverage Proportion (%)

Bare ground coverage Proportion (%)

Topographic relief Meters

OSAVI –

Grazing pressurea –
aDistance to the nearest water source (meters) multiplied by the cattle
stocking rate of each pasture was used to represent grazingr pressure
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GeoTIFFs and read these into the R statistical language
as raster layers (Core Team 2013). We also read the
GeoTIFFs representing the spatial values of elevation
and topographic relief into R, and all layers were stacked
to create the occurrence predictor rasters for the base-
line SDMs.
We imported occurrence data for Northern Bobwhite,

Eastern meadlowlark, and Cassin’s Sparrow into R and
used the predictor raster stack to build SDMs using five
different algorithms: BioClim (BC), generalized linear
model (GLM), MaxEnt, boosted regression tree (BRT),
and random forest (RF). We used the R package “dismo”
to execute BioClim, generalized linear model, and Max-
ent (Hijmans et al. 2017). We used the R packages
“gbm” and “randomForest” to execute boosted regres-
sion tree and random forest, respectively (Greenwell
et al. 2019; Liaw and Wiener 2002). Table 2 outlines the
basic mathematical approach of each modeling algo-
rithm and provides a comparison of the advantages of
each model in the occupancy framework. We generated
“background data” to produce the non-presence class re-
quired by the logistic models. Background data do not
attempt to guess at absence locations, but instead are

used to characterize the study region (Phillips and Elith
2011; Phillips et al. 2009; Ward et al. 2009). These estab-
lish the environmental domain of the study and are in-
dependent of occurrence data while presence data
establish the conditions under which a species is more
likely to be present than a null, or completely random,
model would predict. After building baseline SDMs for
each species, we added the grazing pressure raster to the
occurrence predictor raster stack and re-ran the models
to assess any improvement or degradation in the pre-
dictive performance of each algorithm. Prior to building
SDMs, we performed preliminary analyses for each spe-
cies to ensure only predictors that added to the explana-
tory power of the models and did not add to the overall
deviance which were used in each SDM. This included
the use of a priori Gradient Boosting Machine (GBM)
analyses and step-wise regression variable dropping and
selection for each model and species.

Model evaluation
We evaluated performance of each model using the area
under the receiver operator curve (AUROC or AUC)
and true sensitivity statistic (TSS). The AUC (range from

Table 2 Comparison of mathematical approach for each modeling algorithm being used to project species distributions in this
study. Data requirements and advantages are also listed

Model Data type Approach/mechanism Advantages

BioClim (BC) Presence
only

This method uses a parallelepiped classifier to define species
potential presence as the multi-dimensional environmental
spaces bounded by the minimum and maximum values for
all occurrences and gives a binary classification of suitable
environment and unsuitable environment (Busby 1986,
1991).

Interpretations are straightforward, and the model is
relatively simple to execute. More recently, this approach has
proven useful in predicting biological invasions and
distribution of widespread diseases (Robertson et al. 2004;
Zhao et al. 2006).

Generalized
linear (GLM)

Presence/
absence

This is a generalization of the multiple regression model that
uses the “link” function to accommodate non-linear relation-
ships between the predictor and response variables. Using
various transformations of the predictors (e.g., Logit, Poisson,
and Gaussian) interactions between predictors can also be
specified.

This approach is often ideal since occupancy modeling
almost always involves multiple predictors, non-linear re-
sponse functions, and response variables that are binary
(Austin and Cunningham 198; Margules et al. 1987; Franklin
2010).

Random
forest (RF)

Presence/
absence

An ensemble machine-learning method in which a large
number (500–2000) of decision trees are grown with subsets
of the data (e.g., species occurrences) containing a random
subset of candidate predictor variables (Breiman 2001). Each
tree votes for a binary outcome and the resulting predictions
are averaged.

This method makes no assumptions on data distribution
and instead uses bootstrap aggregation to subsample the
given data. This approach has been shown to have higher
prediction accuracy than ordinary decision trees in SDM and
other applications (Prasad et al. 2006; Gislason et al. 2006).

MaxEnt Presence
only

A machine-learning algorithm based on the principle from
statistical mechanics and information theory that states that
the probability distribution with maximum entropy is the
best approximation of an unknown distribution (Phillips et al.
2006).

Recent investigations have shown the MaxEnt algorithm to
be mathematically identical to that of the GLM (Poisson
distribution) (Renner and Warton 2013). Its unique ability to
accept environmental gradients as part of the prediction
process makes its application to ecological niche modeling
ideal (Saatchi et al. 2008; Evangelista et al. 2009).

Boosted
regression
tree (BRT)

Presence/
absence

An ensemble, regression-based method that combines the
strengths of two commonly used algorithms: regression
trees (models that define the response to predictors using
binary splits) and boosting (a method for combining mul-
tiple simple models to improve performance). An initial re-
gression tree is fitted and iteratively improved upon in a
forward stage-wise manner (boosting) by minimizing the
variation in the response not explained by the model at
each iteration.

This approach can easily accommodate different types of
predictor variables, missing data, and outliers as well as fit
complex nonlinear relationships automatically handing
collinearity between predictor variables. BRT interpretations
can be easily summarized to provide powerful ecological
insight (Franklin 2010).
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0 to 1) is a measure of rank correlation. In unbiased
data, a higher AUC value indicates that areas with high
predicted suitability values tend to be sites of known
presence (Phillips et al. 2006). The TSS is an approach
based on maximizing the sum of sensitivity and specifi-
city independent of species prevalence (Liu et al. 2013).
Many distributional model evaluation approaches (e.g.,
kappa) are threshold-dependent; a value above a user-
set threshold indicates a prediction of presence (e.g., any
outcome above a 50% [0.50] likelihood indicates pres-
ence), and a value below the threshold indicates absence.
However, different models assign different weight to
false absences or false presences making it hard to com-
pare models directly. The TSS is considered an alterna-
tive to the traditionally used kappa to assess model
performance, since it has the advantage of being thresh-
old and prevalence independent. This becomes especially
meaningful when building SDMs for rare or endangered
species that may have low prevalence across a given
range or study area as the default threshold, usually 0.5,
for many models (e.g., logistic regression-based GLM)
may not be appropriate. In these cases, studies have sug-
gested the use of binary species presence/absence maps
as input which may be preferred for interpretation in
building conservation plans, reservation networks, or
sanctuaries as opposed to a continuous representation of
probability of species presence (Fernández et al. 2006;
Mladenoff and He 1999; Wilson et al. 2005). Although
not prevalence independent, the AUC can be valuable in
determining optimal threshold criteria. For example,
Freeman and Moisen (2008) found that for SDMs pro-
jecting distributions of species with high prevalence
(50%), default threshold criteria tended to converge.
However, for species with low prevalence (e.g., 10%), the
threshold where sensitivity + specificity is maximum of-
fered the ideal probability threshold for species presence.
In the R workspace output, this is typically read as “Max
TPR + TNR” and can be exceedingly valuable for

accurately modeling distributions of rare or endangered
species.

Results
We recorded a total of 1,565 occurrences for all three
species within the CGRDA in the summer of 2016
(Northern Bobwhite = 996, Eastern Meadowlark = 179,
Cassin’s Sparrow = 390). Machine learning models
(MaxEnt and RF) had the highest combinations of AUC
and TSS for all species, with RF being the most consist-
ent for each analysis (Table 3). In comparison of AUC
values, the environmental envelope model (BC) and the
GLM remained constant or only marginally improved
with the addition of the grazing pressure raster. How-
ever, the TSS for these algorithms markedly improved
with the addition of the grazing pressure raster for the
Northern Bobwhite (ΔTSS = +0.93) and Eastern
Meadowlark (ΔTSS = +0.08) SDMs (Table 3). The pre-
dictive power of both machine learning models and the
BRT improved with the addition of the grazing pressure
raster for all species, with the exception of MaxEnt and
Eastern Meadowlark [Maxent: Northern Bobwhite
[ΔAUC = +0.06], Cassin’s Sparrow [ΔAUC = +0.02]; ran-
dom forest: Northern Bobwhite [ΔAUC = +0.01], East-
ern Meadowlark [ΔAUC = +0.05], Cassin’s Sparrow
[ΔAUC = +0.02]; random forest: Northern Bobwhite
[ΔAUC = +0.03], Eastern Meadowlark [ΔAUC = +0.04],
Cassin’s Sparrow [ΔAUC = +0.03]. Random forest had
the highest explanatory power (AUC) across all species
but was, however, outperformed in sensitivity (TSS) by
the other algorithms for all species for models including
the grazing pressure raster (Table 3).
Northern Bobwhite distribution, the species of highest

prevalence (n = 996), was best explained by random for-
est model inclusive of grazing pressure (AUC = 0.84;
TSS = 0.48). However, the Bobwhite distribution was
better explained by the addition of the grazing pressure
raster by all algorithms as evidence in the measurable

Table 3 Results of species distribution model (SDM) performance for Bioclim, generalized linear model (GLM), MaxEnt, boosted
regression tree (BRT), and random forest (RF) algorithms in predicting occurrence of Northern Bobwhite (NOBO), Eastern Meadowlark
(EAME), and Cassin’s Sparrow (CASP) on East Foundation’s Coloraditas Grazing Research and Demonstration Area (CGRDA) in the
summer of 2016. Model performance metrics (area under curve [AUC] and true sensitivity statistic [TSS]) are compared for SDMs
using environmental predictors only, and environmental predictors stacked with a raster representing localized grazing pressure
(denoted by “+”).

BioClim GLM MaxEnt BRT RF

AUC TSS AUC TSS AUC TSS AUC TSS AUC TSS

NOBO 0.54 0.032 0.64 0.034 0.61 0.056 0.59 0.049 0.81 0.42

+ 0.58 0.96 0.67 0.24 0.67 0.18 0.60 0.57 0.84 0.48

EAME 0.81 0.41 0.78 0.62 0.79 0.61 0.84 0.46 0.91 0.62

+ 0.81 0.49 0.78 0.80 0.78 0.75 0.89 0.80 0.95 0.67

CASP 0.58 0.13 0.44 0.18 0.69 0.24 0.62 0.21 0.78 0.22

+ 0.62 0.15 0.44 0.18 0.71 0.29 0.64 0.67 0.81 0.23
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increase in AUC and TSS in each model (ΔAUC = +
0.01−0.06, ΔTSS = + 0.04−0.93; Table 3).
Eastern Meadowlark distribution, the species of the

lowest prevalence (n = 179), was also best explained by
the random forest model inclusive of grazing pressure
(AUC = 0.95; TSS = 0.67). The SDM explanatory power
for this species’ distribution was not improved with the
addition of grazing pressure using the BioClim, GLM,
and MaxEnt algorithms. Cassin’s Sparrow distribution,
the species of moderate prevalence (n = 390), was also
best explained by the random forest model inclusive of
grazing pressure (AUC = 0.81; TSS = 0.23). However,
the SDM explanatory power for this species’ distribution
was not improved with the addition of grazing pressure
using the GLM algorithm. Additionally, other algorithms
(BRT and MaxEnt) produced higher TSS values (TSS =
0.67 and 0.29, respectively).

Discussion
Our novel approach to spatially quantify localized graz-
ing pressure improved the prediction accuracy and sen-
sitivity of SDMs projecting the distribution of Northern
Bobwhite, Eastern Meadowlark, and Cassin’s Sparrow.
Of the three algorithms used, random forest performed
best for explaining presence regardless of species preva-
lence and should be preferred by rangeland managers
seeking to promote sustainable livestock grazing while
balancing the needs of sensitive wildlife populations.
Random forest models operate on a machine-learning,
decision tree mechanism. Thus, the superior perform-
ance of RF in this study implies that it is a valuable ap-
proach to limited, binary data (e.g., presence/absence). It
is important to note the varying model performance
with relation to species prevalence. For example, SDMS
built to project distributions of Northern Bobwhite, the
species of the highest prevalence in this study varied
widely in predictive performance (AUC) and sensitivity
(TSS) across algorithms. Rangeland managers should
consider both metrics (AUC and TSS) when assessing
model performance since both provide valuable insight
into the over utility of the model (i.e., AUC describing
explanatory power and TSS describing model stability or
sensitivity to the predictors). Although both AUC and
TSS are theoretically prevalence independent, for species
like Northern Bobwhite that are often locally abundant
where they are present, machine-learning models that
can accommodate non-linear relationships (e.g., random
forest) should be preferred in modeling distributions. In
an ecological context, the improvement in model sensi-
tivity and explanatory power seen with the addition of
grazing pressure to Northern Bobwhite SDMs should be
considered meaningful by rangeland ecologists. The dir-
ect impacts of livestock grazing (e.g., changes in vegeta-
tive structure and composition) on the distribution of

Northern Bobwhite is well recognized (Baker and Guth-
ery 1990; Coppedge et al. 2008; Flanders et al. 2006;
Lusk et al. 2002). However, with the inclusion of grazing
pressure as an indirect variable and the subsequent in-
crease in explanatory power across all algorithms
(ΔAUC = + 0.01−0.06), our findings suggest this species’
distribution is also indirectly affected by livestock graz-
ing activities. Thus, future investigations into the North-
ern Bobwhite distribution or populations should
consider the presence and localized intensity of livestock
grazing.
The addition of grazing pressure as a variable also in-

creased the explanatory power and sensitivity of some
SDMs built to project distributions of Cassin’s Sparrow,
the species of moderate prevalence in this study (Bio-
Clim, MaxEnt, BRT, RF). However, any improvements in
the model performance were marginal (ΔAUC = + 0.0
−0.4). Our findings suggest indirect effects of livestock
grazing on Cassin’s Sparrow presence, though marginally
detectable, were negligible. Rangeland managers should
consider the unique ecological circumstances of each
rangeland and livestock grazing system when investigat-
ing Cassin’s Sparrow distribution or presence. Although
both machine-learning models (MaxEnt and random
forest) and boosted regression tree performed relatively
well, compared to the envelope (BioClim) and logistic al-
gorithms (generalized linear model), the BRT produced
the highest model sensitivity. This is likely due to the in-
nate accommodation of missing and limited data in this
algorithm, which makes it ideal for species of lower (or
unknown) prevalence. In these cases, the boosted regres-
sion tree provides a superior, yet conservative SDM for
rangeland ecologists seeking to project distributions of
species with low to moderate or unknown prevalence.
Distributions of Eastern Meadowlark, the species of

the lowest prevalence in this study, were better ex-
plained by the addition of grazing pressure only in the
boosted regression tree and random forest SDMs. Al-
though previous studies have suggested a neutral effect
of livestock grazing activity on the presence of Eastern
Meadowlark, this species has also been known to alter
behavior and be particularly susceptible to brood parasit-
ism (usually by Brown-headed cowbird Molothrus ater)
in heavily grazed pastures (Baker and Guthery 1990;
Coppedge et al. 2008). Further, Roseberry and Klimstra
(1970) found substantial differences in Eastern Meadow-
lark nest densities between lightly grazed and heavily
grazed pastures of similar vegetation composition and
area. While direct impacts of livestock grazing (e.g.,
changes in vegetative structure) may not be as evident in
the distributions of this species as they are in others
(e.g., Northern Bobwhite), our findings suggest some in-
direct influence of livestock grazing activity on Eastern
Meadowlark presence. The random forest algorithm, in
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the accommodation of missing data and low presence
values, produced the SDM with the highest explanatory
power for this species, and it should be preferred for
other species of low prevalence.
In a broader context, our investigation of grazing pres-

sure influence on bird distributions could be expanded
to explore the effect of other land uses (e.g., urbanization
and cultivation) on distributions. For instance, the effect
of native prairie versus cultivated cropland on the distri-
bution of birds of the same species or the more complex
interaction between disturbance and brood parasites
(e.g., Brown-headed cowbird Molothrus ater) and that
effect on the distribution of susceptible bird species
(Brittingham and Temple 1983). This becomes especially
relevant as climate change accelerates the impacts of
land-use changes across the landscape (Pielke 2005).

BioClim
This algorithm is traditionally used as an environmental
envelope method to model large scale distributions and
invasions (Hijmans et al. 2001, 2005). However, recent
improvements in the algorithm (in the R package
“Dismo” [Hijmans et al. 2017]) have allowed analyses of
single species occurrences at finer resolutions. The bin-
ary output also makes it especially well-suited for species
with low prevalence. For example, it performed best
(AUC = 0.81) with the Eastern Meadowlark, the species
of the lowest prevalence in this study. For this species,
this model did not improve with the addition of grazing
pressure as a predictor. Since other models showed im-
provement with the addition of grazing pressure (BRT
and RF), this may suggest some disadvantage to the lin-
earity of this algorithm. BioClim also had the poorest
predictive performance (AUC = 0.54; 0.58, with and
without grazing pressure, respectively) for Northern
Bobwhite. This species had the highest prevalence in the
study and, thus, may suggest a saturation limitation for
this algorithm as large sample sizes have been recog-
nized to de-stabilize similar models (Mateo et al. 2010).

GLM (binomial)
The SDMs built using this logistic regression-based algo-
rithm, generally, performed poorly, especially for Cas-
sin’s Sparrow (AUC = 0.44). Additionally, GLM SDMs
for Eastern Meadowlark and Cassin’s Sparrow did not
improve with the addition of grazing pressure despite
the improvement seen in other models. Although this al-
gorithm can theoretically accommodate non-linear rela-
tionships between predictor and response variables, it
has been recognized to over-fit distribution models pro-
ducing biased or inaccurate results (Austin and Cun-
ningham 1981; Elith and Graham 2009).

MaxEnt
SDMs built using this machine-learning algorithm pro-
jecting Northern Bobwhite, and Cassin’s Sparrow distri-
butions improved with the addition of grazing pressure
as a predictor. However, predictive power of the Eastern
Meadowlark SDM decreased with the addition of grazing
pressure (AUC = 0.79, 0.78; respectively) while the TSS
remained high (0.61, 0.75, respectively). Although not a
rare or endangered species, this was the species of the
lowest prevalence in the study and supports the concept
suggested by Freeman and Moisen (2008) that default
probability thresholds may not be appropriate at low
prevalence, and that the intersection where Sensitivity +
Specificity is maximum could serve as a more ideal
probability threshold for species presence. We did not
perform this analysis here but is an area of interest for
future research in improving SDMs.

BRT
The BRT performed best with Eastern Meadowlark
SDMs (AUC = 0.89), and all species’ models improved
with the addition of grazing pressure as a predictor. This
algorithm has the unique advantage to accommodate
collinearity among predictors and fit complex nonlinear
relationships between response and predictor variables
(Elith et al. 2008; Franklin 2010). Among the SDMs pro-
jecting Cassin’s Sparrow distribution, the BRT had the
highest model sensitivity (TSS = 0.67). The BRT requires
two user-input parameters: learning rate (lr), which de-
termines the contribution of each decision tree to the
overall model, and tree complexity (tc), which controls
whether interactions are fitted (Elith et al. 2008). Ideally,
parameters should be optimized based on sample size,
number of predictors, intended use of the model, etc. to
avoid overfitting the model. However, for the purposes
of this study, we maintained consistent parameters to
directly compare model performance (lr = 0.001, tc = 6).
This may have contributed to the poor predictive per-
formance of the BRT in projecting Northern Bobwhite
distribution relative to the other two species.

RF
This regression-based machine-learning algorithm per-
formed best for Eastern Meadowlark SDMs (AUC =
0.95) and produced the most powerful SDMs for all spe-
cies. All models built using this algorithm improved with
the addition of grazing pressure as a predictor, and
model sensitivity was relatively consistent compared to
the output of the other SDMs. Whereas the BRT re-
quires the user to alter input parameters to ensure the
model is not over fitted, RF has the advantage of a built-
in “safe-guard” against overfitting in that each decision
tree which uses a random bootstrap aggregation to sub-
sample the given data (Breiman 2001; Prasad et al.
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2006). RF is growing in popularity among ecologists for
SDM and shows great promise for advanced SDM appli-
cations since it makes no assumptions on data
distributions.

Conclusions
Our findings suggest that model selection for SDM
should include consideration of species prevalence and
machine-learning algorithms should be preferred when
the target species is of low or unknown prevalence. For
example, rangeland ecologists building SDMs for a spe-
cies that is either rare across its range or of unknown
abundance are able to select or alter the probability
threshold of species presence in machine-learning algo-
rithms. This is especially valuable since SDMs build
based on the default probability threshold (0.5) used for
rare or endangered species could lead to misinformed
conservation plans and refuge networks. This new ap-
proach in spatially quantifying and including livestock
grazing pressure as an indirect variable in SDMs has
broad implications in rangeland ecology since it ad-
dresses a weakness in the current SDM framework—the
exclusion of biotic and indirect relationships. With this,
we can better estimate the effects of varying grazing re-
gimes on grassland bird populations and more accur-
ately predict the distribution of species of interest
Further, our results imply livestock grazing has indir-

ect influence on grassland bird species’ distributions and
should be included in SDMs as an indirect variable in
addition to direct, associated vegetative changes. This is
especially important for ground-dwelling species (e.g.,
Northern Bobwhite). For instance, more advanced boost-
ing or machine-learning algorithms (e.g., boosted regres-
sion tree and random forest) that can accommodate
limited data, complex and non-linear relationships, and
collinearity among predictors could inform a rangeland
ecologist if the redistribution, or absence of breeding
quail on a property, is more heavily influenced by the
absence of rainfall during drought conditions (an indir-
ect effect) or the resulting senescence of vegetation (a
direct effect of drought). Algorithms that can tease apart
these effects can help inform effective, science-based
management.
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