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A B S T R A C T

Rangelands are often too large and inaccessible to determine biomass accumulation and vegetation cover by
ground surveys alone, particularly in semi-arid regions where productivity per unit area is typically low and
highly variable. Thus, the development of remote sensing derived spectral indices have been of particular in-
terest to rangeland managers as a more cost-effective means of measuring the characteristics, biomass, and
extent of vegetation. The Normalized Difference Vegetation Index (NDVI) is the most widely used spectral ve-
getation index (VI) by ecologists and agriculturalists today. However, regions with sparse vegetation or soils that
generate high reflectance values (e.g., dry sandy soils) can severely hinder the reliability of the NDVI as an
accurate estimator of green biomass, saturate remote sensors or produce biased estimates of green biomass and
vegetative cover. The Optimized Soil Adjusted Vegetation Index (OSAVI) is a newly formed alternative that can
accommodate greater variability due to high soil background values. We evaluated the suitability of the NDVI
and OSAVI as potential estimators of green biomass and vegetative coverage in a semi-arid rangeland in south
Texas. We compared coverage estimates of herbaceous, bare-ground, and woody vegetation calculated from
classified satellite images stacked with either an NDVI or OSAVI band to those from traditional ground surveys.
OSAVI-derived coverage estimates of herbaceous and woody vegetation did not significantly differ from those
produced by ground surveys in 2015. However, NDVI-based estimates for woody vegetation, as well as bare
ground, did differ significantly from estimates generated from ground surveys (p=0.012, 0.018). In 2016, the
OSAVI-derived estimates for all three land cover classes were not significantly different than those produced by
ground surveys. Our results suggest the OSAVI to be the most appropriate VI-based estimator of green biomass
and vegetative coverage in the semi-arid regions of southern Texas.

1. Introduction

Although spectral vegetation indices have a long history of use by
remote sensing scientists, they are an increasingly popular tool used by
agriculturalists and rangeland ecologists (Curran et al., 1992; Henebry,
1993; Wabnitz et al., 2008). Determining biomass accumulation and
vegetation cover of rangelands using ground surveys can be time con-
suming and costly, particularly on large, semi-arid regions where pro-
ductivity per unit area is typically low and highly variable from year to
year. Thus, the development of remote sensing derived spectral indices
have been of particular interest to rangeland managers as a more cost-
effective means of measuring the characteristics, biomass, and extent of
vegetation (Eisfelder et al., 2012).

The Normalized Difference Vegetation Index (NDVI) is the most
widely used spectral vegetation index (VI) by ecologists and agri-
culturalists today (Horning et al., 2010; Yagci et al., 2014; Lee et al.,

2016). Similar to most VIs, the NDVI transforms reflectance measure-
ments from the reflectance peak of vegetation in the near-infrared (NIR)
and red wavelength ranges where chlorophyll absorbs light energy for
photosynthesis. The purpose of this two-band design is to reduce
variability caused by reflectance of the soil background, illumination,
and view angle variation. However, regions with sparse vegetation or
soils that generate high reflectance values (e.g., dry sandy soils) can
saturate remote sensors or produce biased estimates of green biomass
and vegetative cover (Huete et al., 1997; Nicholson and Farrar, 1994).
Remote sensing scientists have addressed this through formulating new
spectral vegetation indices that can accommodate greater variability
due to soil reflectance (e.g., Soil Adjusted Vegetation Index, SAVI;
Optimized Soil Adjusted Vegetation Index, OSAVI). Although the NDVI
is still used for estimating biomass and coverage in areas with wildly
varying vegetation types, its use in semi-arid rangelands is becoming
increasingly suspect especially in regions with sandy soils (Bowers and
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Hanks, 1965; Gu et al., 2008).
The Rio Grande Plains, or “brush country”, encompasses the Coastal

Sand Plain, Tamaulipas Thornscrub, and Lower Rio Grande Valley
ecoregions of Texas (Omernik, 1987). The region, as a whole, is pri-
marily managed for agricultural use. However, in the smaller, Tamau-
lipas Thornscrub and Coastal Sand Plan regions, wildlife based man-
agement often outpaces agricultural interests. Frequent and reoccurring
drought presents unique challenges to cattle ranching in this region as
naturally available vegetation is often sparse (Taylor, 2014). Thus,
landowners are charged with the task of developing profitable man-
agement systems that balance the needs of sustainable cattle and/or
wildlife enterprises as well as those of sensitive wildlife populations in
the presence of frequent and reoccurring drought. Accurate and cost-
effective vegetation monitoring is crucial to any effective rangeland
management strategy and spectral VIs can provide a valuable tool to-
wards reaching this end. However, the use of the NDVI in this region is
questionable, at best, due to the high sand content of the soils and
sparse vegetation (Eastwood et al., 1997; Elmore et al., 2000; Todd and
Hoffer 1998).

Here, we evaluate the suitability of the NDVI and OSAVI as potential
estimators of green biomass and vegetative coverage in a semi-arid
rangeland in south Texas. We compared coverage estimates of her-
baceous, bare-ground, and woody vegetation calculated from classified
satellite images stacked with either an NDVI or OSAVI band to those
from traditional ground surveys.

2. Methods

2.1 Study area

The Coloraditas Grazing Research and Demonstration Area
(CGRDA) is a 7684-ha area located on the 60,000-ha San Antonio Viejo
Ranch (SAV). SAV is one of six properties of the East Foundation that
are managed as a living laboratory to support wildlife conservation and
other public benefits of ranching and private land stewardship. The
CGRDA is representative of south Texas rangeland ecosystems and en-
compasses the Coastal Sand Plain and Texas-Tamulipan Thronscrub
ecoregions. Low-growing woody plants, dense shrubs (Prosopis glandu-
losa, Acacia greggii, Celtis ehrenbergiana, Colubrina texensis, Aloysia gra-
tissima, Lantana urticoides), and cacti (Opuntia engelmannii var. lindhei-
meri, Opuntia leptocaulis) dominate the vegetation in this area. The
CGRDA is comprised of 10 pastures (Fig. 1) each assigned to 1 of 4
cattle grazing systems. Four pastures are assigned to a continuous
grazing system with 2 pastures maintained under a high stocking rate
(1 Animal Unit [AU]/14 ha) and 2 pastures under a moderate stocking
rate (1 AU/20 ha). Six pastures are assigned to a rotational system with
3 pastures, 1 herd maintained under the high stocking rate and 3 pas-
tures, 1 herd maintained under the moderate stocking rate. Grazing was
deferred on all pastures for two years prior to the onset of cattle grazing
in December 2015. We compared pre- and post-grazing vegetation
cover estimates from ground surveys.

2.2 Ground surveys

We collected vegetation composition and structure data from 141
permanent 20-m transects each October in 2015 and 2016. We allo-
cated transects proportional to the area of ecological sites that occur in
each pasture using stratified sampling resulting in 12–16 transects per
pasture (Bonham, 2013). Sample size for belt transects was determined
by a power analysis with an 80% chance in detecting a 20% change in
canopy cover at P≤ 0.05. Detecting a 20% change in bare ground re-
quired the highest number of transects out of the 4 measurements,
therefore, we used this as the minimum number of transects placed in
each pasture.

We marked each transect start with a t-post and collected data in a
random, predetermined direction (N, S, E, W). On each transect we

sampled 5, 20× 50 cm quadrats (5 m spacing) randomly placed at ei-
ther 0, 0.5, 1, 1.5, 2, or 2.5 m from the left side of the tape and facing
away from the transect start. The specifics for transect direction and
quadrat spacing start remained constant for each transect over the
course of the study.

At each transect, we collected percent cover of woody, herbaceous,
litter, and bare ground. We defined woody canopy cover as the portion
of foliage cover projected on the ground (Bonham, 2013). We collected
woody canopy cover along each of the 20m transects by recording the
amount of the ground (in centimeters) covered by woody plant mate-
rials (leaves and branches) and succulent (cacti) that intercepted the
line transect by species (Canfield, 1941; Higgins et al., 2012). If a gap in
the canopy exceeded 0.5 m for an individual, we recorded separate
cover measurements. We calculated percent canopy cover by summing
the intercept measurements for an individual species, dividing by total
line length and converting to a cover percentage. We calculated total
percent cover by adding cover percentages for all species, which may
exceed 100% when overlapping canopies by different species are re-
corded (Coulloudon et al., 1999).

We defined herbaceous cover as the non-woody vegetation, such as
grasses and forbs, projected onto the ground (Bonham, 2013). We de-
fined bare-ground as the amount of soil that is not covered by any type
of vegetation (Holecheck et al., 2011). Within each quadrat, we mea-
sured percent canopy cover by 4 functional groups (grass, forb, bare
ground, litter≤ 100%) in 5% increments, this included increments of
1% for coverages< 5%. (Higgins et al., 2012). When woody or suc-
culent cover was rooted within the frame, we made note of percent
cover, species, and abundance. For the purpose of this analysis, we
combined grass and forb cover into herbaceous cover and litter and
bare ground into bare ground cover.

2.3 Imagery processing

We conducted a series of processing functions using imagery cap-
tured during the same growing season as when ground surveys took
place (summer of 2015 and 2016) (Fig. 2). Two Landsat 8-OLI tiles
(< 6% cloud cover) that encompassed the study area were acquired
(courtesy of U.S. Geological Survey) and processed in ENVI 5.1 (NASA
Landsat Program, 2015, 2016). We corrected for atmospheric condi-
tions and converted the original image format of Digital Numbers (DN)
to radiance and then surface reflectance. Each image was first resized to
the rectangular extent of the LC pasture complex and then extracted by
the study area mask in ESRI ArcGIS ArcMap 10.5. Both extracted
images (2015 and 2016) were then spatially subset by bands 2–5 cor-
responding to Landsat 8-OLI band designations: blue, green, red, and
NIR. Bands were stacked and two vegetation indices were calculated
per image using the band math tool in ENVI 5.1. NDVI was calculated
according to the standard formula [(NIR-Red)/(NIR+Red)] in which
the drop in reflectance between the Near-Infrared (NIR) band and Red
band is divided by the increase in reflectance. This creates index values
between −1 and 1 (Rouse et al., 1973). We then stacked the NDVI as a
band on the NIR-RGB image for, both, 2015 and 2016. Similarly, the
OSAVI was calculated using ENVI’s band math tool using the standard
formula [(NIR-Red)/(NIR+Red+0.16)] and stacked as a band on the
NIR-RGB image for, both, 2015 and 2016. Based on the Soil Adjusted
Vegetation Index (SAVI), this VI uses a reflectance constant of 0.16 to
adjust for high background reflectance (e.g., areas with sparse vegeta-
tion and high soil reflectance) (Rondeaux et al., 1996; Ren et al., 2018).

We classified each VI-NIR-RGB stacked image using Maximum
Likelihood supervised classification into three land cover classes: her-
baceous, woody, and bare-ground. We calculated statistics for each
class to estimate land cover coverage and performed an accuracy as-
sessment for each classified image using ground truth points collected
from ground surveys. We compared 2015 and 2016 classification ac-
curacy (as a function of overall accuracy, Kappa coefficient, and pro-
ducer’s accuracy) and coverage estimates derived from VI-NIR-RGB
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stacked images for the CGRDA and per pasture. We then also compared
land cover (%) change in coverage between the two years for each class
(herbaceous, woody, bare). Coverage estimates derived from VI-NIR-
RGB images were also compared to those generated using ground
survey methods for both 2015 and 2016 using paired Student’s t-tests.

3. Results

3.1 Image classification accuracy

For both 2015 and 2016 images, stacking the OSAVI produced a
higher overall classification accuracy than stacking the NDVI (2015:
89.87% and 89.73%; 2016: 95.87% and 95.33%, respectively)

(Table 1). Producer’s accuracy within each land cover class was also
higher in classified images stacked with OSAVI rather than NDVI.

Within each year, accuracy varied among land cover classes but
woody classification accuracy was consistently higher in both VI-
stacked images (2015: 88.4% and 90.8%; 2016: 96.4% and 97.6%,
respectively). OSAVI- and NDVI-stacked classifications demonstrated
the lowest accuracy for herbaceous cover in both years.

3.2 Coverage estimates

Herbaceous coverage estimates derived from image classification
did not significantly differ from those derived from ground surveys for
2015 (NDVI+Ground survey: p=0.83; OSAVI+Ground survey:

Fig. 1. Study area comprised of 10 pastures located on the San Antonio Viejo (SAV) Ranch of the East Foundation in south Texas. Combined, all named pastures
constitute the Coloraditas Grazing Research and Demonstration Area (CGRDA).

Fig. 2. Outline of processing workflow for this study.
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p=0.66; Table 2). However, coverage estimates for herbaceous vege-
tation generated using the NDVI were significantly different than those
derived from ground surveys post-grazing, in 2016 (p=0.0035). Esti-
mates of woody vegetation coverage derived from the NDVI also dif-
fered significantly from those produced by ground surveys in 2015
(p=0.012). Woody vegetation coverage estimates produced by both
VIs did not significantly differ from ground survey estimates for 2016.
Both NDVI- and OSAVI-derived coverage estimates for bare ground in
2015 differed significantly from bare ground coverage estimates

produced by ground surveys (p=0.018 and 0.022, respectively).
However, OSAVI-based coverage estimates of bare ground in 2016 did
not significantly differ from those produced by ground surveys
(p=0.52). Classification derived coverage estimates for 2015 held
considerably more error than those for 2016, particularly within the
herbaceous land cover class (NDVI: 4.79% omission error, 7.9% com-
mission error; OSAVI: 6.1% omission error, 7.5% commission error;
Ground survey: SE=1.5; Fig. 3).

3.3 Estimating land cover change

Between 2015 and 2016, ground survey methods estimated a
−12.7% change in herbaceous cover and 8.32% change in woody cover
across the full extent of the CGRDA. NDVI-based classification produced
similar estimates (−10.18% and 10.19%, respectively). OSAVI-based
classification also produced similar estimates (−12.7% and 12.6%) but
overestimated the increase in woody coverage. Although ground survey
methods estimated a 5.9% change in bare coverage, both NDVI- and
OSAVI-based classification failed to estimate any measurable change in
bare-ground cover between 2015 and 2016 (< 1%).

Land cover change estimates per pasture varied considerably be-
tween imagery-based and ground survey-based methods (Fig. 4). Per
pasture, NDVI-based classification tended to overestimate changes in
herbaceous and woody coverage and underestimate changes in bare-
ground coverage. In contrast, OSAVI-based classification tended to
underestimate changes in woody and bare-ground coverage and esti-
mate changes in herbaceous cover with reasonable accuracy.

4. Discussion

Our results suggest the OSAVI to be the most appropriate VI-based
estimator of green biomass and vegetative coverage in the semi-arid
regions of southern Texas. OSAVI-derived coverage estimates of her-
baceous and woody vegetation did not significantly differ from those
produced by ground surveys in 2015. The NDVI-based estimates for
woody vegetation, as well as bare ground, did differ significantly from
estimates generated from ground surveys. In 2016, the OSAVI-derived
estimates for all three land cover classes were not significantly different
than those produced by ground surveys. In contrast, the NDVI-based
coverage estimates of herbaceous vegetation and bare ground differed
significantly from estimates generated for ground surveys. In compar-
ison to estimates generated by traditional ground survey methods, the
OSAVI-based classification produced statistically similar coverage es-
timates for herbaceous and woody vegetation in both years.

Estimates varied per pasture, particularly for bare-ground coverage.
Coverage estimate and classification accuracy was generally lower in
2015 (pre-grazing) than 2016 (post-grazing), likely due to the higher
relative abundance of dried leaf litter and standing senesced plants,
since the elevated visible reflectance exhibited by non-photosynthetic
vegetation can distort the contrast between the visible and NIR re-
flectance (Todd et al., 1998). Both VIs also had the lowest classification
accuracy for the bare-ground pixel class. The challenge of spectrally
identifying bare-ground can be also attributed to the presence of or-
ganic litter material or senesced plants (Todd et al., 1998). Ad-
ditionally, the bare-ground pixel class we classified here, represents
areas absent of herbaceous or woody vegetation. Thus, this class could
potentially include materials ranging from bare rock to fine sand or soil,
all of which would produce differing spectral signatures. These issues
can be easily addressed by a finer separation in bare-ground Regions of
Interest (ROIs) in the initial classification or a post-processing mixed
pixel analysis (MPA). However, for most rangeland managers, mon-
itoring changes in herbaceous and woody cover remain the priority in
assessing rangeland productivity (Qi et al., 2002; Prince and Tucker,
1986). Although soil moisture would not have directly affected vege-
tation indices due to the two-band design (i.e., using the drop in re-
flectance between NIR and red bands rather than raw reflectance

Table 1
Accuracy assessment results for Maximum Likelihood classifications using NIR-
RGB images of the CGRDA stacked with either NDVI or OSAVI vegetation in-
dices for 2015 and 2016. Producer’s accuracy for each land cover class is also
reported per classification and year. K represents the kappa coefficient for each
classification accuracy.

2015 Overall accuracy (%) K Class (producer’s) accuracy (%)

Herbaceous Woody Bare

NDVI 89.73 0.85 89.20 88.40 91.60
OSAVI 89.87 0.85 86.80 90.80 92.00

2016
NDVI 95.33 0.93 93.60 96.40 94.80
OSAVI 95.87 0.94 96.00 97.60 95.20

Table 2
Resulting p values of paired Student’s t-tests for estimates of herbaceous,
woody, and bare coverage in the CGRDA in 2015 and 2016. VI-derived cov-
erage estimates (OSAVI and NDVI) are compared to those derived from tradi-
tional ground surveys. GS=Ground Survey; *Denotes significance.

2015 2016

Herbaceous Woody Bare Herbaceous Woody Bare

NDVI:GS 0.83 0.012* 0.018* 0.0035* 0.73 0.02*

OSAVI:GS 0.66 0.051 0.022* 0.072 0.83 0.52
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Fig. 3. Coverage estimates for 2015 (A) and 2016 (B) for the full extent of the
CGRDA for each land cover class (herbaceous, woody, and bare) as derived
from NIR-RGB imagery classification (stacked NDVI or OSAVI) and calculated
from ground surveys. Error bars included in ground truth values represent
standard error within each class. Error bars included in NDVI and OSAVI results
represent omission error (upper limit) and commission error (lower limit) of the
classified image for each land cover class.
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values), variable precipitation could have contributed to the error in VI-
based coverage estimates indirectly through temporary succulence of
vegetation or the removal of dust or sand from green, photosynthetic
leaf area. At a slightly higher wavelength (1.57–1.65 µm) the Short-
wave Infrared (SWIR) band is especially sensitive to soil moisture
content and may be significant in future studies involving biomass es-
timates in semi-arid rangelands (Harris and Asner, 2003; Jiapaer et al.,
2011).

In agreement with several existing studies, the accuracy of both VIs
in estimating herbaceous and woody coverage pre- and post-grazing
demonstrate the suitability of these remotely sensed products in mon-
itoring vegetative changes semi-arid, grazed rangelands (Diouf and
Lambin, 2001; Lyon et al., 1998; Anderson et al., 1993). We suggest,
however, that in south Texas rangelands, the OSAVI should be used
preferentially as it accommodates the high levels of soil background
variability found in semi-arid areas better than the NDVI. Vegetation
indices are powerful alternatives to traditional ground survey methods
for monitoring rangeland productivity and health since free-use sa-
tellite data are widely available and generating vegetation indices (and

other remotely sensed products) is less time consuming than traditional
vegetation sampling techniques on-foot. The OSAVI, then, can be a
valuable tool for rangeland managers since its superior performance as
an estimator of green biomass and vegetative coverage can provide an
accurate and cost-effective, means of monitoring herbaceous changes
across large, remote areas. This, more sensitive index, allows managers
and rangeland ecologists to quantify long-term changes in vegetation
condition and rangeland production under varying management re-
gimes or during periods of recurring drought.

Accurate, remotely sensed estimates of vegetative biomass and
coverage grant managers the tools to make quick and informed deci-
sions regarding rangeland management (e.g., the duration of safe
grazing seasons, stage of vegetative development, annual effects of
weather on cattle forage, effects of grazing on plant succession) (Todd
et al., 1998; Richardson et al., 1982). As the human population and
demand for agriculture increase, rangeland ecologists are charged with
the task of managing larger and more complex operations. The growing
body of remotely-sensed data and derived products provide new tools
and techniques to monitor vegetative changes in semi-arid rangelands.
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Fig. 4. Land cover change (%) for each land cover class (A= herbaceous, B=woody, and C=bare) between 2015 and 2016 per individual pasture of the CGRDA as
derived from NIR-RGB imagery classification (stacked NDVI or OSAVI) and calculated from ground surveys. Pasture abbreviations used: Rodeo=RD,
Calichera=CL, Coloraditas= CO, San Rafael= SR, Loma= LM, Tequileras=TQ, Guadalupe=GP, Desiderio=DS, Tia Nena=TN, San Juan=SJ.
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