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ARTICLE INFO ABSTRACT

Aim: Complex, biotic interactions are notably excluded from species distribution models (SDMs) as they are
often difficult to quantify and accommodate in a traditional modeling framework, especially those with a
Birds temporal component. The territorial nature of breeding Cactus wren is well-documented and typically involves
Cactus wren nest usurping (i.e., destruction) of conspecifics. Due to their similar nesting ecology, breeding Verdin are fre-
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;zl::l}fgtmo" quently the target of such behavior and are often forced to move or abandon nests. Using the Verdin/Cactus
Species distribution model wren system as a case study, our goal was to evaluate the performance of SDMs that include only environmental
Predation predictors with SDMs that also include biotic relationships as predictors.

Verdin Location: East Foundation’s San Antonio Viejo Ranch in south Texas.

Methods: We built SDMs (MaxEnt, Boosted Regression Tree [BRT], and Random Forest [RF]) to project Verdin
distribution during the early (April through mid-May), peak (mid-May through mid-June), and late (mid-June
through mid-July) breeding periods using occurrence data collected during the 2015 and 2016 breeding seasons.
We ran parallel analyses using relevant environmental features alone as predictors and then environmental
features with observed Cactus wren density.

Results: Random Forest (RF) produced the highest predictive performance SDMs for all three breeding periods
(AUC = 0.81-0.99; TSS = 0.23-0.73). All models improved in predictive power (A AUC = 0.01-0.10) and model
sensitivity (A TSS = 0.09-0.66) with the inclusion of Cactus wren density as a predictor of Verdin presence.
Main conclusions: Our results indicate that SDM performance is improved by the inclusion of biotic relationships
as predictors. Incorporating biotic interactions, as well as their temporal trends, is essential in efforts to monitor
or conserve bird species with similar nesting ecologies. Further, modeling algorithms that can accommodate
complex, non-linear relationships (e.g., Random Forest) should be preferred in SDM development and appli-
cation.

1. Introduction

Traditionally, species distribution models (SDMs), which statisti-
cally associate a species’ occurrence with a suite of geospatial pre-
dictors, use resource variables, resources that the animal consumes or
requires to persist in an area (e.g., shrub density, water availability) to
define and project a species’ niche and distribution (Austin and Niel,
2011; Elith and Leathwick, 2009). Indirect variables, which are features
the animal does not consume or require for persistence but with which
it may still interact (e.g., competition or predation), are often not in-
cluded in SDMs due to the difficulty in identifying the variable

ecologically, quantifying the relationship, or in managing collinearity
issues adding an interaction factor to a traditional SDM framework may
contribute (Austin and Niel, 2011). However, recent advances in ma-
chine learning algorithms (e.g., Random Forest) have enabled us to
include indirect variables or biotic relationships, such as competitive
exclusion, in SDMs (Miller, 2010). Complex, biotic interactions are
notably excluded from SDMs as they are often difficult to quantify and
accommodate in a traditional modeling framework, especially those
with a temporal component (i.e., an interaction or relationship that
changes through time).

In this study we use the ecological relationships between two bird
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species as a case study of the potential value of incorporating biotic
interactions into SDMs. Competition between sympatric species often
include contest for limited resources (e.g., territory, food, mates). In
birds, availability of nesting space or materials presents a unique
competitive challenge in that the degree of contest between species has
a temporal aspect, namely the breeding seasons. For example, compe-
tition for nest-sites is often observed in sympatric bird species with si-
milar nesting ecology that would otherwise partition resources the re-
mainder of the year (Martin, 1993; Macarthur, 1958). Inferior
competitors are then frequently pushed to alternative nest-sites that
may be more vulnerable to predation or exposure (Newton, 1994).

One such example is the relationship between breeding Cactus wren
Campylorhynchus brunneicapillus, a large (32-47 g), territorial wren
native to the desert southwestern United States, and Verdin Auriparus
flaviceps, a small (5-8 g) penduline tit native to the southwestern United
States and northern Mexico (Anderson and Anderson, 1973; Lockwood
and Freeman, 2004; Williamson, 2000). Most of the year, the disparity
in size and general morphology of these two species allows for terri-
torial and food resource partitioning (Anderson and Anderson, 1973;
Wise-Gervais, 2005). However, both the Cactus wren and Verdin prefer
areas of dense Cholla cacti (Opuntia spp.) for nesting but will also utilize
Palo Verde (Cercidium spp.), large mottes of mixed cacti, and other
spiny plants (Anderson and Anderson, 1973; Wise-Gervais, 2005). The
territorial nature of breeding Cactus wren is well-documented and ty-
pically involves nest usurping (i.e., destruction), with the Verdin fre-
quently the target of such behavior and are often forced to retreat to
alternative nest-sites (McGee, 1985; Simons and Simons, 1990).

Our main objective was to evaluate the performance of SDMs that
include only environmental predictors with SDMs that also include
biotic relationships as predictors. More specifically, as a proof of con-
cept, we evaluated the ability of SDMs of Verdin that included only
environmental predictors with SDMs that also included the density of
Cactus wren as a predictor. We also evaluated the ability of SDMs in-
corporating Cactus wren to detect differences in the relative influence
of this biotic predictor among early, peak, and late portions of the
Verdin breeding season.

2. Methods
2.1. Study site

We conducted our study on the East Foundation’s 61,000-ha San
Antonio Viejo Ranch (SAV), located approximately 25km south of
Hebbronville, Texas in Jim Hogg and Starr counties. SAV is located
within the South Texas Plains ecoregion and is one of six properties of
the East Foundation that are managed as a living laboratory to support
wildlife conservation and other public benefits of ranching and private
land stewardship. Vegetation composition and structure within our
study area is characteristic of this ecoregion and consists of a mosaic of
grassland and thornscrub. SAV is representative of south Texas range-
land ecosystems and encompasses the Coastal Sand Plain and Texas-
Tamulipan Thronscrub ecoregions. Low-growing woody plants, dense
shrubs (Prosopis glandulosa, Acacia greggii, Celtis ehrenbergiana, Colubrina
texensis, Aloysia gratissima, Lantana urticoides), and cacti (Opuntia en-
gelmannii var. lindheimeri, Opuntia leptocaulis) dominate the vegetation
in this area. Mean annual temperature within our study site is 22.6 C°
and mean annual precipitation is 502.5mm (PRISM Climate Group,
2018). Mean monthly temperature during our study period (April-July
2015 and 2016) was 27.2 C* with a maximum daily high of 32.8 C’
(PRISM Climate Group, 2018). Mean monthly precipitation during our
study period was 77.1 mm with a maximum daily high of 93.1 mm
(PRISM Climate Group, 2018).

2.2. Environmental predictors

We used canopy height, shrub density, water proximity, grass spp.
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coverage, and cacti spp. coverage recorded from ground surveys as well
as local topographic relief and an Optimized Soil Adjusted Vegetation
Index (OSAVI) calculated using remotely sensed imagery in 2015 and
2016 as environmental predictors in SDMs. Specific workflow and
processing details for each environmental predictor can be found in
Appendix A.

2.3. Bird occurrence data

Avian point counts consisted of 25 12-point transects arranged in a
stratified-random design across SAV, stratified by vegetation type. Each
transect was surveyed 3 times throughout the breeding season: first
visit between April and mid-May, second visit between mid-May and
mid-June, and third visit between mid-June and mid-July. We used
point count data collected from April to July 2015 and 2016 to build
baseline SDMs. Each point was located 400-m apart, and 2 observers
recorded visual and auditory occurrences of birds within 200-m of each
point simultaneously yet independently. We used a traditional frame-
work in which each occurrence was counted as a ‘presence’ record at
each point, omitting the duplicate records from the double observer
design, and resampling the data by a 200-m cell-size. This granted us a
finer spatial resolution of the data set to thoroughly investigate the
influence of conspecific (Cactus wren) density on the presence of
Verdin. Cactus wren density was calculated using observed abundance
at each transect point divided by the total space surveyed (200-m?). We
used the occurrence of Verdin and the calculated density of Cactus wren
during the breeding seasons of 2015 and 2016 for SDMs.

2.4. Data processing and analysis

We exported the rasters of all predictors as GeoTIFFs and read these
into the R statistical language as raster layers (R Core Team, 2013). All
layers were stacked to create the occurrence predictor stack for SDMs.
Parallel analyses were also performed by time period within the
breeding season: early (April through mid-May), peak (mid-May
through mid-June), and late (mid-June through mid-July) to investigate
temporal changes in Cactus wren influence on Verdin distribution. Bird
occurrence data were subset by season. We imported occurrence data
for Verdin into R and used the predictor raster stack to build SDMs
using three different algorithms: MaxEnt, Boosted Regression Tree
(BRT), and Random Forest (RF). Table 1 outlines the basic mathema-
tical approach of each modeling algorithm and provides a comparison
of the advantages of each model in the occupancy framework. We
generated ‘background data’ to produce the non-presence class required
by the logistic models. Background data do not attempt to guess at
absence locations, but instead are used to characterize the study region
(Phillips and Elith, 2011; Phillips et al., 2009; Ward et al., 2009).
Background data represent the environmental domain of the study and
are independent of occurrence data while presence data establish the
conditions under which a species is more likely to be present than a
null, or completely random, model would predict. After building
baseline SDMs, we added the raster representing Cactus wren density to
the occurrence predictor raster stack and re-ran the models to assess
any improvement or degradation in the predictive performance and
sensitivity of each algorithm. For each breeding period, we also cal-
culated relative influence and significance of each predictor using a
mixed-model approach. We calculated relative influence of each pre-
dictor on Verdin presence using a BRT analysis and the significance of
highly influential variables through logit generalized linear regression
analyses. The BRT has the unique advantage to accommodate colli-
nearity among predictors and fit complex nonlinear relationships be-
tween response and predictor variables making it ideal for determining
the relative contribution of each predictor (Elith et al., 2008; Franklin,
2010). Generalized linear models, based on generalized multiple linear
regression, also accommodate non-linear relationships through use of
the “link” function in which predictors can be transformed based on
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Table 1
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Comparison of mathematical approach for each modeling algorithm being used to project species distributions in this study. Data requirements and advantages are

also listed.

Model

Data type

Approach/mechanism

Advantages

MaxEnt

Boosted Regression Tree
(BRT)

Random Forest (RF)

Presence only

Presence/
absence

Presence/
absence

A machine-learning algorithm based on the principle from
statistical mechanics and information theory that states that the
probability distribution with maximum entropy is the best
approximation of an unknown distribution (Phillips et al., 2006).

An ensemble, regression-based method that combines the
strengths of two commonly used algorithms: regression trees
(models that define the response to predictors using binary splits)
and boosting (a method for combining multiple simple models to
improve performance). An initial regression tree is fitted and
iteratively improved upon in a forward stagewise manner
(boosting) by minimizing the variation in the response not
explained by the model at each iteration.

An ensemble machine-learning method in which a large number
(500-2000) of decision trees are grown with subsets of the data
(e.g., species occurrences) containing a random subset of
candidate predictor variables (Breiman, 2001). Each tree votes
for a binary outcome and the resulting predictions are averaged.

Recent investigations have shown the MaxEnt algorithm to be
mathematically identical to that of the GLM (Poisson distribution)
(Renner and Warton, 2013). Its unique ability to accept
environmental gradients as part of the prediction process make its
application to ecological niche modeling ideal (Evangelista et al.,
2009; Saatchi et al., 2008).

This approach can easily accommodate different types of
predictor variables, missing data, and outliers as well as fit
complex nonlinear relationships automatically handing
collinearity between predictor variables. BRT interpretations can
be easily summarized to provide powerful ecological insight
(Franklin, 2010).

This method makes no assumptions on data distribution and
instead uses bootstrap aggregation to subsample the given data.
This approach has been shown to have higher prediction accuracy
than ordinary decision trees in SDM and other applications.
(Gislason et al., 2006; Prasad et al., 2006).

response data distribution (Austin and Cunningham, 1981; Franklin,
2010; Margules et al., 1987). We used the logit distribution (binary
response or presence/absence) to determine significance of each pre-
dictor.

Prior to building SDMs, we performed preliminary analyses to en-
sure only predictors that added to the explanatory power of the models
and did not add to the overall deviance were used in each SDM. This
included the use of a priori Gradient Boosting Machine (GBM) analyses
and step-wise regression variable dropping and selection for each model
and time period. We also performed time-fixed effects (FE) regression
analysis to identify any significant effects between years in occurrence
response to predictor variables. There was no significant effect in
Verdin occurrence response to predictor variables between years (p =
0.79), thus eliminating the need to separate data per year or accom-
modate for time-FE in SDMs. Occurrence data were pooled for the 2015
and 2016 breeding seasons.

2.5. Model evaluation

We evaluated performance of each model using the Area Under the
Receiver Operator Curve (AUROC or AUC) and true sensitivity statistic
(TSS). The AUC (range from 0 to 1) is a measure of rank-correlation. In
unbiased data, a higher AUC value indicates that areas with high pre-
dicted suitability values tend to be sites of known presence (Phillips
et al., 2006). The TSS is an approach based on maximizing the sum of
sensitivity and specificity independent of species prevalence (Liu et al.,
2013). Many distributional model evaluation approaches (e.g., kappa)
are threshold-dependent; a value above a user-set threshold indicates a
prediction of presence and a value below the threshold indicates ab-
sence. However, different models assign different weight to false ab-
sences or false presences making it hard to compare models directly.
The TSS is considered an alternative to the traditionally used kappa to
assess model performance, since it has the advantage of being threshold
and prevalence independent.

3. Results

We recorded a total of 981 occurrences of Verdin throughout the
2015 and 2016 breeding seasons: 351 during the early breeding period
(April through mid-May), 322 during the peak breeding period (mid-
May through mid-June), and 308 during the late breeding period (mid-
June through mid-July). We also recorded a total of 788 occurences of
Cactus wren throughout the 2015 and 2016 breeding seasons: 332

during the early breeding period, 278 during the peak breeding period,
and 178 during the late breeding period. Estimated Cactus wren den-
sities ranged from 0.06 to 2.9 individuals per 200-m?. Of the three al-
gorithms used, Random Forest (RF) produced the highest predictive
performance SDMs for all three breeding periods (Table 2). Boosted
Regression Tree (BRT) produced the lowest performing model overall
for the early breeding period, both, in terms of predictive power
(AUC = 0.60, 0.63; with and without Cactus wren density included a
predictor, respectively) and model sensitivity (TSS = -0.02, 0.15; with
and without Cactus wren density included as predictor, respectively).
All models improved in both predictive power (A AUC = 0.01-0.10)
and model sensitivity (A TSS = 0.09-0.66) with the inclusion of Cactus
wren density as a predictor of Verdin presence (Table 2). However,
magnitude of improvement in model performance varied by breeding
period. During the early breeding period (April through mid-May),
SDMs that included Cactus wren density as a predictor performed only
slightly better than those that included environmental features alone
(MaxEnt: A AUC = +0.02, A TSS = +0.09; BRT: A AUC = +0.03, A
TSS = +0.17; RF: A AUC = +0.01, A TSS = +0.24). SDMs that in-
cluded Cactus wren density as a predictor for the peak breeding season
(mid-May through mid-June), as opposed to those including environ-
mental features only, produced larger increases in model performance,
relative to the early breeding period (MaxEnt: A AUC = +0.09, A TSS

Table 2

Results of species distribution model (SDM) performance for MaxEnt, Boosted
Regression Tree (BRT), and Random Forest (RF) algorithms in predicting oc-
currence of Verdin Auriparus flaviceps on East Foundation’s San Antonio Viejo
Ranch (SAV) during the early (April through mid-May), peak (mid-May through
mid-June), and late (mid-June through mid-July) breeding seasons of
2015-2016. Model performance metrics (area under curve [AUC] and true
sensitivity statistic [TSS]) are compared for SDMs using environmental pre-
dictors only and environmental predictors stacked with a raster representing
Cactus wren Campylorhynchus brunneicapillus density (denoted by ‘+°).

MaxEnt BRT RF

AUC TSS AUC TSS AUC TSS
Early + 0.74 0.40 0.60 —0.02 0.81 0.23

0.76 0.49 0.63 0.15 0.82 0.47
Peak + 0.80 0.14 0.89 0.48 0.89 0.59

0.89 0.34 0.95 0.73 0.99 0.67
Late + 0.81 0.27 0.73 0.31 0.88 0.59

0.86 0.93 0.77 0.46 0.98 0.73
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Fig. 1. Relative influence, as calculated by boosted regression tree analysis
(BRT), of environmental features and Cactus wren Campylorhynchus brunnei-
capillus (CACW) density on the presence of Verdin Auriparus flaviceps on East
Foundation’s San Antonio Viejo Ranch during the early (a; April through mid-
May), peak (b; mid-May through mid-June), and late (c; mid-June through mid-
July) 2015-2016 breeding seasons.

= +0.20; BRT: A AUC = +0.06, A TSS = +0.25; RF: A AUC =
+0.10, A TSS = +0.08). SDMs built for the late breeding period (mid-
June through mid-July) produced similar, yet less pronounced im-
provements in performance for models that included Cactus wren
density as a predictor as opposed to environmental features alone
(MaxEnt: A AUC = +0.05, A TSS = +0.66; BRT: A AUC = +0.04, A
TSS = +0.15; RF: A AUC = +0.10, A TSS = +0.14).

Water proximity was the most influential (+) feature in predicting
Verdin presence during the early breeding period (Fig. 1). Verdin pre-
sence during the peak breeding season was most influenced by Cactus
wren density (-) and green biomass (+), represented by the OSAVI.
Cactus wren density (-) and green biomass (+) remained influential in
the late breeding period. However, shrub density (+) and cactus spp.
coverage (-) also became influential predictors for Verdin presence.

4. Discussion

Our findings indicate inclusion of a biotic relationship into a tra-
ditional SDM framework improves model predictive power and model
sensitivity. Incorporating these biotic interactions, as well as their
temporal trends, is essential in efforts to monitor or conserve bird
species with similar nesting ecologies. Ecologists should not only con-
sider the environmental requirements for species persistence, but also
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the presence of conspecifics with which they are known to interact
during various life history stages (e.g., fledging periods, nest-site se-
lection or initiation). Modeling algorithms that can accommodate
complex, non-linear relationships (e.g., Random Forest) should be
preferred in SDM development and application. Random Forest routi-
nely outperforms other machine-learning and linear algorithms, both,
in our study and others involving non-normal data distribution and
complex predictor interactions (Breiman, 2001; Mi et al., 2014; Prasad
et al., 2006).

Although our objective was not to thoroughly examine interactions
between these two bird species, our results demonstrate how SDMs can
be used to investigate potential competitive interactions between an-
imal species. For example, Cactus wren density had a significant, ne-
gative influence on the distribution of Verdin during the peak (mid-May
through mid-June) and late (mid-June through mid-July) breeding
season. However, Cactus wren density was not a negatively correlated
predictor for Verdin presence during the early breeding season (April
through mid-May). This may have biologically meaningful implications
for understanding how these two conspecifics interact during nest-site
selection. More specifically, this suggests that optimal nest-site selec-
tion may not necessarily be the source of the observed competition
pressure. Observational studies suggest that Cactus wren usurp con-
specific nests in an effort to maximize predator-free nest space (McGee,
1985; Simons and Simons, 1990). Our findings support this assertion as
the potential source of competitive pressure since Verdin presence was
not negatively affected by Cactus wren density until after the initial
breeding period. Further, predation is the primary cause of nest failure
in birds so it is reasonable to expect species able to minimize predation
pressure will have a substantial competitive advantage (Davis, 2017;
Newton, 1994). It is imperative we include such biotic relationships, as
well as their temporal components, in the modelling framework for
accurate SDMs.

Biosketch

The focus of our research is improving distribution models by in-
corporating complex, biotic interactions through the use of various al-
gorithms, data transformation and generation, and remotely sensed
imagery data. We continue to investigate new ways to include temporal
influence and biotic relationships into a traditional predictive modeling
framework to create more accurate and inclusive species distribution
models.

Data accessibility

All environmental GIS layers and remotely sensed imagery gener-
ated for this study are available as raster grids from the joint National
Aeronautics and Space Administration (NASA) and U.S. Geological
Survey (USGS) database for Landsat imagery data at: landsat.usgs.gov.
Climate data generated for this study are available as ‘band interleaved
by line’ formatted imagery, convertible for raster grids, from the PRISM
Climate Group database at: prism.oregonstate.edu.
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Appendix A

We collected vegetation composition and structure data from 141
permanent 20-m transects in October 2016. We allocated transects
proportional to the area of ecological sites that occur in each pasture
using stratified sampling resulting in 12-16 transects per pasture
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(Bonham, 2013). We marked each transect start and collected data in a
random, predetermined direction (N, S, E, W). On each transect we
sampled 5, 20 x 50 cm quadrats (5 m spacing) randomly placed at ei-
ther 0, 0.5, 1, 1.5, 2, or 2.5m from the left side of the tape and facing
away from the transect start, visually recording percent cover of woody
and herbaceous (later classified by grass spp.) in each quadrat.

We also documented woody canopy cover along each of the 20m
transects by visually recording the amount of the ground (in cen-
timeters) covered by woody plant materials (leaves and branches) and
succulent (cacti) that intercepted the line transect by species (Canfield,
1941; Higgins et al., 1996). If a gap in the canopy exceeded 0.5 m for an
individual, we recorded separate cover measurements. We calculated
percent canopy cover by summing the intercept measurements for an
individual species, dividing by total line length and converting to a
cover percentage. We calculated total percent cover by adding cover
percentages for all species, which sometimes exceeded 100% when
overlapping canopies by different species were recorded (Coulloudon
et al.,, 1999). Locations of water sources (e.g., livestock wells) within
the study site were provided by the East Foundation. To calculate water
proximity, we gridded the spatial extent of the SAV Ranch into a fishnet
(30-m? resolution). We performed a proximity analysis on each pixel
centroid using the Near tool in ArcMap 10.5 to determine distance of
each centroid to location of nearest water source, usually a livestock
well and holding tank as no natural surface water exists within the
study site, and very little exists on the Coastal Sand Plain region of
Texas as a whole (Snelgrove et al., 2013). We made considerations for
seasonality as not all groundwater pumps are operational year-round on
large south Texas cattle ranches and ensured only those wells known to
be active during the summer of 2015 and 2016 were used in the ana-
lysis.

We imported values for each predictor (canopy height, shrub den-
sity, water proximity, grass spp. coverage, and cacti spp. coverage) into
ArcMap 10.5 and used Kriging interpolation to minimize spatial sam-
pling bias and create continuous surface layers of environmental pre-
dictor values. Kriging is a geostatistical method through which inter-
polated values are modeled by a Gaussian process governed by
covariances. This method of spatial interpolation estimates a con-
tinuous surface of values directly based on values at surrounding points
weighted according to spatial covariance (van Beers and Kleijnen,
2004). The Kriging interpolation algorithm is optimal for most eco-
spatial modeling because it produces an unbiased prediction and cal-
culates the spatial distribution of uncertainty allowing for an accurate
estimate of error at any particular point (Mahmoudabadi and Briggs,
2016). We then calculated the mean values for each predictor within
the 2015 and 2016 study periods using the raster algebra tool in
ArcMap 10.5.

We acquired one Landsat 8-OLI tile (< 6% cloud cover) that en-
compassed the study area (courtesy of U.S. Geological Survey) for each
year (2015 and 2016) and processed this in ENVI 5.1 (NASA Landsat
Program, 2015; 2016). We corrected for atmospheric conditions and
converted the original image format of Digital Numbers (DN) to ra-
diance and then surface reflectance. We first resized the images to the
rectangular extent of the SAV and then extracted by the study area
mask in ESRI ArcGIS ArcMap 10.5. We then spatially subset each ex-
tracted image by bands 2-5 corresponding to Landsat 8-OLI band des-
ignations: blue, green, red, and NIR. Bands were stacked and the OSAVI
was calculated using the band math tool in ENVI 5.1 for each image.
This index for LAI follows the standard formula [(NIR-Red)/(NIR + Red
+0.16)] and uses a reflectance constant of 0.16 to adjust for high
background reflectance (e.g., areas with sparse vegetation and high soil
reflectance) (Rondeaux et al., 1996). In south Texas, specifically, this
vegetation index outperforms other, more common vegetation indices
(e.g., Normalized Difference Vegetation Index [NDVI]) in, both, overall
image classification accuracy and herbaceous coverage estimations
(Fern et al., 2018). We calculated the mean OSAVI values for the 2015
and 2016 study periods using the raster algebra tool in ArcMap 10.5.
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