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Abstract

Background: Animal space use is a dynamic phenomenon, emerging from the movements of animals responding
to a changing environment. Interactions between animals are reflected in patterns of joint space use, which are also
dynamic. High frequency sampling associated with GPS telemetry provides detailed data that capture space use
through time. However, common analyses treat joint space use as static over relatively long periods, masking
potentially important changes. Furthermore, linking temporal variation in interactions to covariates remains
cumbersome. We propose a novel method for analyzing the dynamics of joint space use that permits straightforward
incorporation of covariates. This method builds upon tools commonly used by researchers, including kernel density
estimators, utilization distribution intersection metrics, and extensions of linear models.

Methods: We treat the intersection of the utilization distributions of two individuals as a time series. The series is
linked to covariates using copula-based marginal beta regression, an alternative to generalized linear models. This
approach accommodates temporal autocorrelation and the bounded nature of the response variable. Parameters are
easily estimated with maximum likelihood and trend and error structures can be modeled separately. We demonstrate
the approach by analyzing simulated data from two hypothetical individuals with known utilization distributions, as
well as field data from two coyotes (Canis latrans) responding to appearance of a carrion resource in southern Texas.

Results: Our analysis of simulated data indicated reasonably precise estimates of joint space use can be achieved
with commonly used GPS sampling rates (s.e. = 0.029 at 150 locations per interval). Our analysis of field data identified
an increase in spatial interactions between the coyotes that persisted for the duration of the study, beyond the
expected duration of the carrion resource. Our analysis also identified a period of increased spatial interactions before
appearance of the resource, which would not have been identified by previous methods.

Conclusions: We present a new approach to the analysis of joint space use through time, building upon tools
commonly used by ecologists, that permits a new level of detail in the analysis of animal interactions. The results are
easily interpretable and account for the nuances of bounded serial data in an elegant way.

Keywords: Bhattacharyya’s affinity, Beta distribution, Time series, Copula marginal regression, Joint space use; GPS
telemetry, Utilization distribution

Background
Quantifying spatial overlap, or joint space, use between
individual animals is of interest in many branches of ecol-
ogy. How animals utilize space is a function of many
factors, including resource availability [1], risk [2], and
competition [3]. How these factors affect interactions
between individuals is of key importance for many ecolog-
ical issues. For example, joint space use has been linked to
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animal contact rates, and thus disease transmission [4, 5],
animal social behavior [6, 7], as well as population genet-
ics [8]. Though a common procedure, the analysis of joint
space use remains problematic [9].
Ecologists commonly analyze space use in terms of an

animal’s utilization distribution (hereafter UD), the 2-
dimensional relative frequency (probability) distribution
of animal locations in space [10]. UDs provide a continu-
ous representation of the relative amount of time an ani-
mal spent at a given location, or the intensity of space use,
facilitating easy interpretation. The probabilistic nature of
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UDs provides attractive properties that make them use-
ful for home range estimation. For example, taking the
isopleth contour at a given probability density can pro-
vide a demarcation of where an animal spent an arbitrary
proportion of its time [10]. However, utilizing the parent
distribution in further analyses permits deeper inference
into the spatial interactions between individuals.
Quantifying the degree of joint space use between 2

individuals permits the testing of a variety of hypothe-
ses about inter-individual interactions [11]. The 3-
dimensional intersection of 2 UDs provides an estimate
of spatial overlap that incorporates information about the
relative intensity of space use by each individual. This
provides a more robust estimate of joint space use com-
pared to 2-dimensional approaches that use the shared
area of UD isopleths. This joint volume can be measured
using several indices, however Bhattacharyya’s Affinity
(BA; [12]) has been shown to be minimally biased and
has attractive properties that lend interpretability [11].
BA scales from 0 to 1, where 0 represents no spatial
overlap and 1 represents identical space use. Theoretical
bounds on behavioral metrics greatly facilitate ecologi-
cal interpretation [13]. Several authors have utilized these
pairwise comparisons to examine changes in joint space
use between blocks of time (sensu [4, 14, 15]).
Though a common procedure in ecological literature,

such an analysis oversimplifies temporal variation in joint
space use. These interactions are dynamic in both time
and space, making analysis of interactions inherently high-
dimensional. Comparisons between few, relatively long
time blocks provide limited insight into these processes,
and overlook considerable temporal detail. Furthermore,
they implicitly assume that animal space use patterns are
stationary, or unchanging within the time period over
which UDs are estimated [16]. This is unlikely to be the
case for long periods of time, but such an assumption
is much more reasonable over shorter intervals. Com-
paring UDs over finer, regular intervals (e.g. week or
month) would reveal considerably more detail in patterns
of spatial interactions, and permit statistical analysis of
interaction dynamics, which was previously elusive [17].
We achieve such an analysis with a novel approach that

synthesizes tools already familiar to ecologists and applies
an appropriate regression framework. Abrahms et al. [18]
derived a UD-based index of space use stability bymeasur-
ing the intersections of successive monthly UD estimates
for an individual. Though they did not consider trends in
the sequence of measurements, their approach is readily
extendable to examine dynamic interactions using a time
series framework [17, 19], a logical avenue for the anal-
ysis of space use dynamics. When coupled, existing UD
intersection metrics and time series analyses provide a
simple, interpretable, and rigorously testable summary of
complex dynamics of joint space use. This reduces a 5-

dimensional problem (latitude, longitude, use intensity of
2 individuals, and time) to 2 manageable dimensions (spa-
tial overlap and time). However, the bounded nature of BA
precludes the use of standard regression procedures, such
as normal linear regression or generalized linear mod-
els (GLMs). This is because GLMs are strictly suited to
distributions with orthogonal (independent) parameters.
The orthogonality assumption is violated when dispersion
depends on the mean, which is a key property of bounded
variables [20]. Other, analogous methods are needed to
link the index to covariates.
Copula regression methods are a commonly used alter-

native to traditional GLMs in the financial and actuarial
sectors [21] though, to our knowledge, their use in ecol-
ogy is limited to one example [22]. They accommodate
any response distribution, and are used to model complex
correlation structures [23]. Recent work extends these
methods to bounded time series [24], providing a link
between the intersection index and explanatory variables.
Extending UD intersection metrics to a time series

framework provides a flexible and interpretable approach
to the analysis of space use interactions between indi-
viduals. Modeling joint space use in this way shows how
the proportion of time 2 individuals use the same places
changes through time, which is not only mathematically
tractable, but intuitively understandable. This makes the
results of our approach simple to communicate to both
peers and non-scientists alike.
The success of this framework depends on the precision

with which BA can be estimated with current GPS tech-
nology, which will affect both the sampling distribution
of BA itself and the estimates of the effect of covariates
on BA. Therefore, the goals of this work are: 1) To deter-
mine the precision with which BA could be estimated over
reasonable sampling intensities; 2) to evaluate the accu-
racy and precision of effect size estimates of a covariate;
and 3) to demonstrate the application of our method-
ology to a real data set. We simulated GPS data sets
arising from known UDs at varying sampling intensities,
then examined the precision of BA estimates from these
simulations at high and low true values. We then evalu-
ated the accuracy and precision of effect size estimates
as sampling intensity increases. Finally, as an example, we
examined the change in spatial interaction of 2 coyotes
(Canis latrans) in southern Texas in response to a carrion
deposition event.

Material andmethods
Simulation study
We expanded simulation methods previously developed
to evaluate kernel density estimator (KDE; [25]) perfor-
mance as home range estimators [26, 27]. We used these
simulations to a produce a known series of BA values with
which we could compare estimates (Fig. 2). Each series



French et al. Movement Ecology            (2019) 7:38 Page 3 of 12

consisted of 100 time windows (t). The true UD of each
individual was held constant for the first half of the series,
shifted to produce a known change in BA at t = 50,
and then held constant throughout the remainder of the
series. We drew a specified number of locations randomly
from the true UD of each individual at each time window,
representing artificial GPS location data, to examine bias
and precision as sampling intensity increases. By defin-
ing time periods a priori, we separate this analysis from
home range estimation [27, 28]. In this context, an auto-
correlated movement model would lead to an observed
movement pattern that did not reflect the true UD on
which we based our BA calculation. We sampled ran-
domly from the true UD in order to ensure consistency
between the within-window range and the location sam-
ples. We used simple bivariate normal (BVN) UDs with
equal, unit variances with means separated by a fixed dis-
tance. We induced a 0.60 change in BA, from 0.20 to 0.80,
at t = 50 by changing the distances between means from
3.580 to 1.319.
We used a fixed KDE to fit a UD estimate for each indi-

vidual at each time window. We used a bivariate normal
kernel according to

̂UDit = 1
nh2

n∑

i−1

1
2π

exp
(−(x − Xi)′(x − Xi)

2h2

)
(1)

where ̂UDit is the estimated UD surface of animal i at time
t, x is any location in 2-d space, Xi is the ith observation
of the animal’s location, n is the number of observations,
and h is a smoothing parameter [25]. We used the refer-
ence smoothing parameter for computational simplicity,
calculated as

h =
√
s2x + s2y

2
· n−1/6 (2)

where s2x and s2y are the variances of the x and y coordi-
nates, respectively [29].
We then calculated BA between the 2 simulated indi-

viduals at each time window to obtain a series of BA
estimates,

BAt =
∫∫ √

̂UD1t(x, y) ∗
√
̂UD2t(x, y)dxdy (3)

where ̂UD1t and ̂UD2t are the UD estimates of individuals
1 and 2, respectively, at time t. We evaluated the bias and
precision of BA estimates for sampling intensities of 50–
1000 locations per temporal window, at increments of 50.
We fit KDEs and calculated BA using the adehabitatHR
package [30] in R [31].
We then evaluated howwell we could estimate the effect

size (magnitude of change) in BA due to our simulated dis-
turbance at t = 50. We used a marginal beta regression
with a Gaussian copula [24] of the form

Yt|X ∼ Beta(μt , κt)
logit(μt) = X�

t β
(4)

where Yt|X is the value of the BA series at time t, given
covariates X, μt and κt are the mean and precision of
the beta distribution at time t, respectively, and β is the
vector of regression coefficients. Copula methods exploit
the probability integral transformation to relate the beta
distributed response Yt to covariates Xt ,

Yt = F−1
t {�(εt);β} (5)

where Yt is assumed to be marginally beta distributed,
F−1
t {·;β} represents the appropriate cumulative density

function linking the density to covariates (see [24]),
and �(εt) is the cumulative distribution function of
the normal distribution with mean 0 and variance εt .
This allows the use of autoreggresive and moving aver-
age (ARMA(p, q)) terms, which are a special case of a
multivariate normal covariance matrix [32], to model
serial dependence in a non-Gaussian context [24]. The
ARMA(p, q) term is defined as

εt =
p∑

i=1
ψiεt−i +

q∑

j=1
λjηt−j + ηt (6)

where εt−i is the error of the previous observation, ψi is
an autoregressive parameter vector, λj is a moving aver-
age parameter vector, and ηt are independent zero-mean
normal variables [24]. Parameters are estimated withmax-
imum likelihood. The copula-based approach separates
the linear predictor from the correlated error structure,
meaning the regression coefficients are interpreted in
the same manner as a GLM and not confounded by the
ARMA(p, q) term. We refer interested readers to [24] for
a detailed treatment on the role and advantages of copulas
in the analysis of bounded time series.
We fit marginal beta regression models using a binary

covariate corresponding to the known change in UDs at
t = 50 using the gcmr package [33] in R [31]. In eco-
logical terms, this is analogous to estimating the effect of
the presence of a resource, the implementation of some
disturbance, a hypothesized season, or some other rele-
vant binary variable, on the degree of spatial interaction
between two individuals. We replicated the entire process
100 times for each level of sampling intensity to obtain the
sampling distribution of our effect size as a function of
sampling intensity.

Application to empirical data
We then used field data representing 2 coyotes to demon-
strate the practical utility of our approach in describing
the dynamics of animal space use (Fig. 1). We collected
these data on the East Foundation’s 61,000 ha San Anto-
nio Viejo Ranch (SAVR) in Jim Hogg and Starr counties
in southern Texas. The East Foundation’s ranches are
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Fig. 1 Territories of the 2 GPS-collared, coyotes M09 and F13, used in our example from the East Foundation’s San Antonio Viejo Ranch. Territories
were delineated using the 75% isopleth of a fixed kernel density estimate of all locations for each individual. Note the location of the carrion
resource near, but outside, both territories

managed as a living laboratory to promote the advance-
ment of land stewardship through ranching, science,
and education. The area is dominated by shrub savan-
nas, primarily composed of honey mesquite (Prosopis
glandulosa), prickly pear (Opuntia spp.), cat-claw acacia
(Acacia greggii), blackbrush (Acacia rigidula), whitebrush
(Alloysia gratissima), and granjeño (Celtis palida), with
early to mid-successional grasses, including three-awns
(Aristida spp.), little bluestem (Schizachyrium scoparium)
and windmill grasses (Chloris spp.).
We captured individuals by helicopter using a net gun

[34], fitted them with a Vertex Plus or Vertex Lite GPS
collar (Vectronic Aerospace GmbH, Berlin), and released
them at the site of capture on 10 December 2016 (n = 1)
and 1 April 2017 (n = 1) as part of an ongoing study of

coyote space use. These collars collected location data
every 2 hours until 31 December 2017, when they auto-
matically released from the animal. While our collars
collected location data on identical schedules, this is not
strictly necessary, as long as collars collect comparable
numbers of locations over the same time windows. To
standardize across collars, we omitted data prior to 1 April
2017 from the analyses presented below. Both coyotes
were considered territorial [35], and occupied distinct,
non-overlapping territories. A domestic cow (Bos taurus x
B. indicus) died of unknown causes in an area well outside
both territories (Fig. 1) during the week of 23 September
2017. Coyotes alter their patterns of space use to utilize
carrion resources [36], so this event afforded us the oppor-
tunity to evaluate whether our methods would detect a
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change in spatial overlap between the coyotes in response
to the presence of carrion.
We included time relative to death of the cow (before or

after) as a dummy coded variable

xt ∈ {0, 1}
xt =

{
0, if t < tcarrion
1, if t ≥ tcarrion

} (7)

where tcarrion is the week of carrion deposition, to test
whether that event had a persistent effect on themean BA.
Autocorrelation was modeled with ARMA(1, 1) terms.
This model is consistent with an interrupted time series
design [37] and is analogous to an ANOVA for a beta-
distributed variable with serial dependence. The resulting
regression form consists of the marginal model

BAt|xt ∼ Beta(μt , κt)
logit(μt) = xtβ1 + β0

(8)

and copula

�(εt)

εt ∼ ARMA(1, 1)
(9)

Succinctly, this model tests for a persistent change in spa-
tial interaction between 2 coyotes following the carrion
deposition event, and estimates its magnitude.

Results
Simulation study
Our simulation showed that reasonably precise estimates
of BA can be achieved with 150 sampled locations per
time window at both high and low values of BA (s.e. =
0.029; Fig. 2). Estimates based on as few as 50 reloca-
tions per window could be useful if the hypothesized
effect of some covariate is sufficiently large. These results
also suggest a slight positive bias at low BA values, which
decreases with sampling intensity. At 50 locations per
window, the average bias at a true BA of 0.20 was 0.0311
(SE = 0.00919), while at a true BA of 0.80 the aver-
age bias was -0.00077 (SE = 0.00641). The bias at low
BA declined with increasing sampling intensity to 0.0155
(SE = 0.00253). The average bias at high true BA values
never exceeded 0.0105 (SE = 0.00342).
Parameter estimates from regression models stabilized

quickly at 150 relocations, while error around the pre-
diction slowly contracts beyond that point (Fig. 3). These
estimates were slightly negatively biased, with an average
bias of -0.0427 (se = 0.00106) at 50 locations/window,
decreasing to a minimum of -0.00508 (se = 0.00106)
as sampling intensity increased. This is likely due to the
slight positive bias of low-valued BA estimates, which was
strongly correlated with effect size bias across simulations
(r = -0.784).

Application to coyote data
The time series of BA values between the two coyotes
indicated an obvious change in behavior following the
appearance of the carrion resource (Fig. 4) and the beta
regressionmodel showed a significant effect of the carrion
event (P < 0.001; Fig. 4). The average UD intersec-
tion increased by 0.246, meaning that, on average, the 2
coyotes spent approximately 25% more time in the same
places following the carrion deposition event. Upper and
lower 95% CIs of this effect were 0.437 and 0.092, respec-
tively. The graphs of observed and fitted values (Fig. 4),
and the residuals (Fig. 5a) showed unaccounted structural
differences between weeks 0–9 and weeks 10–24. Weeks
20, 27, 29, and 36 were identified as potential outliers
(Fig. 5b), but overall the distributional form was appropri-
ate. The ARMA(1, 1) terms were significant (P < 0.001
for both). Autocorrelation diagnostic plots supported the
appropriateness of the assumed autocorrelation structure
(Fig. 5c-d).

Discussion
Our results are a proof of concept for the use of sequen-
tial measurements of UD intersections in a time series
framework to capture dynamics of spatial interactions
between 2 individuals. Results with simulated data reveal
slight positive biases in low-valued BA estimates leading
to slight negative biases in effect size estimates. However,
the effect of such small biases on the ecological interpre-
tation of results likely would be negligible in most cases.
Further, sampling error is reasonable at achievable sam-
ple sizes with current GPS technology. Our framework
is based on familiar analytic tools and results are readily
interpretable. The framework also provides a much more
detailed view of interactions through time compared to
existing methods, as we demonstrated with the coyote
example.

Practical application and performance
Our methodology is applicable to a wide variety of eco-
logical questions where there is an a priori hypothe-
sis about the drivers of joint space use. Our coyote
example focuses on the presence of a resource, how-
ever the imposition of some disturbance, management
action, or life history events (e.g. breeding associated
behavior) are equally well treated with our approach.
Because our approach is couched in a regression con-
text, continuous covariates are also valid, though beyond
the scope of our simulations. These could include such
variables as available forage, precipitation, or tempera-
ture extremes within time windows, or the researcher
could include cosine transformations of time to evaluate
seasonal effects, to name but a few. This allows con-
siderable flexibility to address questions of joint space
use.
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Fig. 2 Distribution of estimated Bhattacharyya’s Affinity (BA) values as sampling intensity increases. Blue lines represent the true BA values of the
parent utilization distributions
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Fig. 3 Estimated effect size of binary covariate on Bhattacharyya’s Affinity (BA) as a function of sampling intensity (sampled locations per time
window). The blue line represents the true effect size
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Fig. 4 Time series of joint space use between the 2 GPS-collared coyotes from the East Foundation’s San Antonio Viejo Ranch, measured by
Bhattacharyya’s Affinity (BA; blue line) and fitted values of the copula regression model (black, dashed line)

The length of the temporal window over which UDs are
estimated is a key consideration in applying this analysis.
The appropriate choice will depend on the temporal scale
of the motivating question and the ecology of the species.
The length of time window must be matched to the scale
of the phenomenon of interest. Specifically, the window
must be fine enough to capture variation in joint space
use attributable to the phenomenon [38]. Highly mobile
animals, that change their patterns of space use often,
may require shorter windows in order to capture relevant
variation in joint space use than sedentary species. For
example, cougars (Puma concolor) are known to exhibit
frequent, recursive space use patterns [39], which would
require short time windows relative to their return fre-
quency to capture. The analysis may also be conducted
with multiple window lengths to examine how overlap
varies with temporal scale, allowing the researcher to
identify when individuals partition space at fine temporal
scales but overlap at larger ones. However, the finest tem-
poral scale that can be considered is limited by the number
of locations required to adequately estimate a UD.
Various authors have reported minimum numbers of

locations required to obtain a reliable UD estimate with
the methods we used [26, 29, 40]. Our simulations show
acceptable results using a first-generation estimator with

150 samples per UD window and 100 windows, approx-
imating hourly collection intervals over a 2-year period.
This sampling regime is common for larger species [41–
43], yielding 168 locations per week. This sampling inten-
sity is sufficient to generate reliable UDs, given the inher-
ently unbiased design of sampling at regular time intervals
[26, 29], and gave adequate performance in our simula-
tions. This sampling intensity is relatively easy to achieve
for large species, but presently unattainable for smaller
species incapable of carrying large batteries. These con-
straints may be alleviated by improvements in battery
technology and efficiency of GPS collar circuits, as well as
more efficient UD estimators.
The precision of BA estimates is a function of the per-

formance of the KDE method used. While we utilized
a first-generation estimator for simplicity and computa-
tional speed, any KDEmethod is suitable for this approach
and the appropriate estimator will depend on the partic-
ular research question [16, 44]. Given that the true UDs
in our simulations were bivariate normal, our use of the
reference parameter is justified in the literature [25, 26].
However, this procedure is known to overestimate the 95%
isopleth area of more complex UDs [26, 45, 46], suggesting
that the density in the tails of the UD is overestimated.
This may also be the case in our simulations, which would
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explain the greater degree of bias when the UDs inter-
sect mainly in their tails (at low true BA values). This
greater positive bias at low values would compress effect
size estimates in cases when BA increased following dis-
turbance, as in our simulations. On the other hand, if the
effect was negative following the disturbance, its magni-
tude would be slightly overestimated. The magnitude of
the bias is small in either case, as indicated at our lowest
sampling intensity. A bias of 3% (our largest average bias)
is unlikely to affect ecological interpretation of results,
and may be safely considered negligible in most cases.
More sophisticated methods may be less biased in the
tails of the UD, reducing bias in parameter estimates. The
relative performance of various KDE procedures within
this context is an open question that warrants further
research.

Further development
Beyond technological improvements, there are analyti-
cal limitations to overcome to realize the full potential of
our approach. Our techniques provide pair-level series,

permitting analysis at the dyad level. Population level
inference will require multivariate time series method-
ologies that accommodate potentially non-independent,
beta-distributed response variables, which to our knowl-
edge are currently unavailable. However, such methods do
exist for short, non-stationary, Gaussian series that could
serve as a conceptual basis for similar approaches with
beta-distributed response variables [47]. Additionally, the
approach we demonstrate here treats BA measurements
as fixed values, though we show that they are estimated
with error. Recent work provides a potential means to
handle this source of error [9], and an appropriate hier-
archical structure could be derived. Such development
would be particularly important in sampling situations
like our coyote example. Our simulation results suggest
that sampling error of UDs at our bi-hourly schedule
(84 locations/week) is appreciable at the lower BA val-
ues we observed between these individuals throughout
the monitoring period (Figs. 2 and 4), thus the uncer-
tainty of our parameter estimates may be particularly
underestimated.
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Advantages of this approach
The residual analysis of the beta regression model of coy-
ote interactions reveals an important advantage of our
approach; there is another period of interaction early in
the series that we have captured, but failed to explain
(Fig. 5). This early period of interaction would have been
masked in a simple analysis of UD intersections before and
after the death of the cow, as would be done using previous
methods. Assuming space use itself to be stationary over
these time blocks is unwarranted. The time series frame-
work we propose captures the nonstationary dynamics of
space use patterns and provides a means to explain them.
Additionally, our methodology yields a statistical test of
the effect that until now was not possible. Although [9]
produced a method to test the significance of a single BA
estimate, our framework permits modeling the influence
of 1 or more variables on the dynamics of joint space use
in an interpretable way.
Each stage of our framework was selected for straight-

forward interpretability (Fig. 6). The probabilistic nature
of UDs, and their widespread use by ecologists make them
an attractive starting point. The intuitive interpretation
of BA as a symmetric index of how much 2 individuals
use the same space makes it a natural choice. More sub-
tly, the choice of marginal copula regression over other
appropriate time series methods also aids interpretabil-
ity. The separation of the regression component from the
correlated error structure allows straightforward inter-
pretation of model coefficients, which is not possible
with other available methods [24]. Despite the substan-
tially different mathematical architecture, this means that
interpretation of model coefficients is done in the same
manner as GLMs, which are common in ecological litera-
ture. This familiarity makes our approach easily accessible
to ecologists.
Fine scale dynamics, such as howmovement trajectories

change, or patterns in the distances between individuals
could also be considered to examine inter-individual inter-
actions [48, 49]. However, these approaches focus on fine-
scale properties of movement, and answer related, but
different questions [50]. Indeed, such analyses could serve
as complimentary tools to our method. For example, joint
space use may be used to examine similarity in habitat
use, while information on the distances between individ-
uals would provide information on how those individuals
respond to each other at a finer scale (e.g. avoidance or
attraction). Capturing these dynamics through time may
elucidate mechanisms of resource partitioning between
species.
The results of our approach are also readily visual-

ized, which is of great heuristic value and lends intuitive
context to the quantitative results. For example, we can
visualize the change in joint space use by the 2 coy-
otes immediately before and after the carrion deposition

event (Fig. 6). Mapping the UDs and the joint UD vol-
ume (the integral of which is BA) shows that joint space
use before the event was concentrated along the boundary
between the 2 territories. After the event, joint space use
increased markedly as the female expanded her activity
range toward the southeast, engulfing the activity range
of the male, which also shifted slightly toward the south-
east. Interestingly, both individuals moved synchronously
away from the carrion initially, and did not converge on
it until the following week, as confirmed by GPS loca-
tions converging at the carcass site (Fig. 1). The cause of
these movements remains unknown, but their identifica-
tion provides important contextual information that aids
interpretation and the generation of ecologically-based
hypotheses.
We argue that these properties also simplify commu-

nication of results to scientific peers and non-scientist
stakeholders alike. The statement “on average, the 2 coy-
otes spent 25% more time in the same places each week
after the carrion resource became available" is an accu-
rate and meaningful interpretation of our results. An
important caveat is that the individuals were not neces-
sarily in those places at the same time within the week.
Thus, the temporal grain and scale used in the analysis
will affect interpretation. Nonetheless, such a statement
carries implications for a variety of disciplines.
Finally, though we discuss linking joint space use

to covariates selected for a priori hypotheses, other
time series methods are applicable. For example, change
detection methods allow researchers to segment time
series into periods of similar behavior [51, 52]. These
exploratory methods could be of great utility when peri-
ods of attraction or avoidance are expected, but when the
time of their occurrence is not known. For example, some
ungulates are known to partition space between sexes for
most of the year, but aggregate during the breeding season
[53]. Change detection methods could be used with a BA
time series between sexes to objectively delineate when
the breeding season occurs.

Conclusions
This work represents a marked advance towards infor-
mative, tenable analysis linking variables to the dynamics
of joint space use that is also communicable to non-
scientists. This methodology has applications in many
areas of applied ecology where the dynamics of animal
interactions are of interest. Given limited time, money,
and material resources, successful management requires
focused efforts. Our methodology provides needed infor-
mation that is intuitively understood by stakeholders. This
facilitates effective communication between scientists
and decision makers, ideally leading to efficient, spatio-
temporally targeted management actions supported by
valid analyses.
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Fig. 6 Visualization of the quantification of joint space use by the 2 coyotes from the East Foundation’s San Antonio Viejo Ranch during the week
prior to the carrion deposition event (t23: carrion location marked with green dot) and during the week in which the event occurred (t24). Relocation
data are analyzed to estimate the 2 individual space utilization distributions (UD; red dots and shading for the female, blue for the male), from which
the joint UD volume is calculated (the integral of which is BA), which indicates the area of joint space use (green shading)
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