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There is growing interest among resourcemanagers in implementing long-termwildlifemonitoring. The process
to develop such a program may seem daunting, however, because it requires determining the species, metrics,
samplingmethods, experimental design, and level of effort necessary to achieve the desired power for detecting
meaningful changes. Failure to give these decisions proper attention often leads to suboptimal information for
decisions and planning objectives. Our primary objectiveswere to develop alternative scenarios for a monitoring
program, including power estimates and sampling effort required to detect population changes for small mam-
mals on rangelands in southern Texas. Our secondary objective was to present a framework for developing
customized monitoring programs for tracking wildlife populations over time. We trapped small mammals
using ~28 000 trap nights each year from2014 to 2016 resulting in 13 183 captures of nine species.We estimated
abundances and occupancy in each year for each species and conducted power analyses using simulations. We
used these results to develop fourmultispeciesmonitoring scenarios: twowith distinctly different levels of effort
with abundance as the focal metric and two for monitoring occupancy. The most effort-intensive scenario re-
quired trapping 40 grids for 6 consecutive nights each yr. With this effort, we predicted it would be possible to
detect annual changes in abundance of ≤ 10% after 10 yr for four species and net declines in occupancy of ≤
50% after 10 yr for five species with a power of 0.90. The least effort-intensive scenario required trapping 30 tran-
sects for 4 consecutive nights each yr.We predicted this effort would allow for the detection of annual changes in
occupancy rates between 35% and 55% after 10 yr forfive species. Our study is an example for landmanagers, pro-
viding general guidelines for developing rigorous, long-term monitoring programs specific to their objectives.

© 2018 The Society for Range Management. Published by Elsevier Inc. All rights reserved.
Introduction

There is growing interest among resource managers in
implementing long-term wildlife monitoring programs. Data from
monitoring have substantial value for detecting relationships between
management actions and animal populations (Pollock et al., 2002) and
should provide direction regarding future management decisions
(Nichols and Williams, 2006; Kendall and Moore, 2012). In addition,
monitoring that is not otherwise driven by a specific hypothesis can
help researchers understand impacts of unplanned events such as
weather (short term) and climatic patterns (long term) onwildlife pop-
ulations (Beever andWoodward, 2011; Fancy andBennetts, 2012; John-
son, 2012). However, formal processes necessary to implement a
research.
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monitoring program may seem daunting. Proper planning and
implementing of a monitoring program includes identifying an appro-
priate species or taxa (Carignan and Villand, 2002), selecting metrics
that are sensitive to changing conditions (Williams et al., 2002),
selecting sampling methods that best maximize efficiency (Garton et
al., 2005), using an experimental design to isolate the hypothesis of in-
terest (e.g., change detection) with themost efficient probabilistic sam-
pling (Garton et al., 2005; Morrison et al., 2008), and employing
sufficient effort (sample size) to achieve the desired level of power for
detecting biologically meaningful changes (Fig. 1; Williams et al.,
2002; Field et al., 2007). Failure to give these decisions proper attention
often leads to misallocated resources, resulting in suboptimal informa-
tion for decisions and planning objectives (Yuccoz et al., 2001; Legg
and Nagy, 2006). In addition, incorporating statistical power analysis
into program design can ensure sampling efforts are optimized such
that more effort than is required to meet stated objectives is not used
(Lenth, 2001; Reynolds et al., 2011). Considering the complexities of
the relationship among sampling objectives, experimental designs,
erved.
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Figure 1. Framework for developing a customized, multispeciesmonitoring program. If prior data that were collected usingmethods proposed for themonitoring program already exist, it
may not be necessary to collect additional data. However, preliminary data should also be specific to and representative of the spatial location of the proposed monitoring program.
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power, and effort, it is also cost effective to evaluate and compare alter-
native monitoring scenarios.

Our primary objectives were to 1) develop and evaluate alternative
monitoring scenarios focused on detecting spatial-temporal changes
in species or assemblage of small mammals within a rangeland system,
2) estimate power and sensitivity for our proposed monitoring scenar-
ios, and 3) characterize appropriate sampling effort required and
resulting level of sensitivity for each scenario. Our secondary objective
was to present a framework that can be replicated elsewhere for devel-
oping customized monitoring programs for tracking wildlife popula-
tions over time.

Step 1. State Objectives

The first step in developing a monitoring program requires identifi-
cation of details that will define the focus of the program and guide fur-
ther decisions. This includes defining the spatial area of interest, the
species or taxa to monitor, and the state variable(s) of the species to
measure (Fig. 1A).

Define the Area

The appropriate spatial area for developing a monitoring program
should be explicit from the program’s objectives (Olson et al., 1999).
The objectives for our study specified the ranches owned by the East
Foundation as the area for our monitoring program. The East Founda-
tion is composed of approximately 87 000 ha of rangeland in southern
Texas that is managed as a working laboratory to support wildlife con-
servation, private land stewardship, and other public benefits associated
with ecologically sound cattle ranching (Fig. 2). We collected data on
the 60 752-ha San Antonio Viejo (Jim Hogg and Starr Counties) and 10
984 ha El Sauz (Willacy and Kenedy Counties) ranches. Annual precipi-
tation averages for the period of 1981–2010 ranged from ~57 cm at the
San Antonio Viejo Ranch to ~66 cm at the El Sauz Ranch (NOAA, 2016).
Annual weather patterns were highly variable in southern Texas, with
rainfall totals over the 12-mo periods ending 30 April 2014, 2015, and
2016 on the San Antonio Viejo Ranch of 47.3 cm, 59.8 cm, and 49.1
cm, respectively. Rainfall totals for the same periods for the El Sauz
Ranch were 52.6 cm, 94.9 cm, and 72.2 cm, respectively.

The San Antonio Viejo Ranch was a matrix of woodland (73%) and
shrubland (18%), with approximately half of the ranch in the Coastal
Sand Plain Ecoregion and half in Texas-Tamaulipan Thornscrub (Dia-
mond and Fulbright, 1990; Fulbright et al., 1990; McLendon et al.
2013b). El Sauz was located 117 km to the east of San Antonio Viejo
and adjacent to the Laguna Madre along the Texas Gulf Coast. El Sauz
was 36% woodland, 30% wetland vegetation, and 26% grassland
(McLendon et al., 2013a). Sixty percent of El Sauz was in the Coastal
Sand Plain ecoregion, with the remaining 40% split evenly between
the Laguna Madre Barrier Islands and Coastal Marshes ecoregion and
the Lower Rio Grande Valley ecoregion (Diamond and Fulbright, 1990;
Fulbright et al., 1990; Forman et al., 2009).

Select Monitoring Taxa

Selection of an appropriate focal species or group to monitor de-
pends on the program’s objectives (Yuccoz et al., 2001; Wiens et al.,
2008). Monitoring for a specific species of concern, to detect impacts
of management actions, or as an indicator of biodiversity or ecosystem
process would likely all result in selecting different focal species (Caro
and O’Doherty, 1999). We assume the objectives have been clearly
stated, including identification of the monitoring species, before the de-
velopment phase that our paper attempts to address. Thus, we limit our
coverage of concepts that should be considered when selecting a focal
species or taxa to a brief summary. When the focal species is not explic-
itly identified in the objectives, a number of criteria have been identified
to help guide the decision, such as species that can be monitored



Figure 2. Ranches where we collected data (black shapes) used to develop long-term monitoring scenarios for the small mammal assemblage for the East Foundation (black and gray
shapes) in southern Texas, USA, 2014–2016.
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efficiently, are sensitive to stresses, respond predictably with low vari-
ability in the response, indicate the cause of the observed change, and
will facilitate reliable prediction of other species’ or systems’ response
(Noss, 1990; Kremen, 1992; Hilty and Merenlender, 2000; Block et al.,
2001; Carignan and Villand, 2002). When possible, target species
whose detected trends are likely to beused to guide futuremanagement
or evaluate past decisions should be selected (Kremen, 1992; Noon et
al., 2012). In addition, ifmonitoring results are to beused to guide future
management aimed at reducing population loss, Wilson et al. (2015)
suggest placing higher values on species with an unknown population
trend andwhose responsewill possibly incite a reallocation of resources
to address a detected decline.

Multiple speciesmonitoring has the advantage of potentially includ-
ing species with a broad range of life history traits such that individual
species may respond differently to changing conditions (Carignan and
Villand, 2002). Collectively, multiple species monitoring has a greater
probability of detecting change within the system, as opposed to an
equivalent amount of effort monitoring only a single species (type II
error). For instance, complex assemblages of birds, small mammals,
and reptiles have likely evolved to reduce niche overlap through
partitioning of resources such as diversification of food preference
(Grinnell, 1904). In rangeland systems, small mammal assemblages
often include five or more species from three or more families,
representing up to three trophic levels (French et al., 1976; Hoffmann
and Zeller, 2005;McAdoo et al., 2006; Galetti et al., 2016). As such, mul-
tiple species monitoring efforts can provide management insights and
inferential linkages to other system changes that would otherwise be
missed in single-species monitoring efforts. In certain situations, in-
creasing the number of focal species to bemonitored can be donewith-
out significantly increasing the effort required, further improving the
appeal for monitoring multiple species.

For the present study, we developed monitoring scenarios for the
small mammal assemblage present in our study area. To optimize the
balance between information gained and effort required, we specifically
defined our focal taxa to include extant species for which populations
can be reasonably monitored with standard live-trapping methods
using box-style (i.e., Sherman) traps at night. Use of small mammal spe-
cies as monitoring foci can be valuable for understanding spatial-tem-
poral variation in rangeland systems (Rosenzweig and Winakur, 1969;
Germano and Lawhead, 1986; Kerley, 1992; Carignan and Villand,
2002). Small mammals represent an important trophic level in range-
land systems, transferring energy from primary producers to a vast
array of secondary and tertiary consumers. Small mammals make up a
significant portion of the diet of numerous raptors (Littles et al., 2007;
Behney et al., 2010; Strobel and Boal, 2010; Williford et al., 2011),
snakes (Pisani and Stephenson, 1991; Stevenson et al., 2010), and me-
dium-sized mammals (Cypher, 2003; Lindzey, 2003; Melville et al.,
2015). Many small mammal species also cache seeds and fruits for
later consumption, assisting in dispersing specific shrubs and poten-
tially influencing the plant community (Ryszkowski, 1975; Price and
Jenkins, 1986; Ostfeld and Clay, 2002). Further, small mammals have a
short generation time and high potential reproductive output, allowing
these species to respond quickly to perturbations in rangeland systems
(Abramsky, 1978; Doonan and Slade, 1995). Because small mammals
are nonmigratory with limited ranges and dispersal (Haskell et al.,
2002; Tucker et al., 2014), demography should reflect localized condi-
tions and therefore provide a representative sample of spatial variability
in microhabitat conditions (Gleason, 1926).
Select Monitoring Metrics

Monitoring metrics should provide a precise and unbiased estimate
of a particular population or community statewith a practical amount of
sampling effort (Block et al., 2001; Morrison et al., 2008). Moreover, the
spatial and temporal resolution of themonitoringmetric should be such
that detected changes in the metric may be addressed with pragmatic
management actions. The most important criteria for monitoring met-
rics are their ability to meet the objectives of the monitoring program.
For instance, if the purpose of monitoring is to assess wildlife response
to ecological restoration efforts, Block et al. (2001) argue that popula-
tion dynamics should be used as the metric. However, metrics such as
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species richness, nest success, or those associated with phenology may
be most appropriate for other monitoring objectives and target species.

Because population size is so often themetric used for detecting eco-
logical effects of management actions (Block et al., 2001;Williams et al.,
2002), many methods have been developed for comparing relative
abundance between sites or through timewith the use of indices. How-
ever, use of indices requires assumptions that are often biologically un-
realistic, resulting in biased estimates that are unreliable for monitoring
purposes (Anderson, 2001; MacKenzie and Kendall, 2002). Unbiased
methods for estimating abundance that account for imperfect detection
are more appropriate for monitoring and can be accomplished for small
mammals with mark-recapture data (Pollock et al., 2002; Williams et
al., 2002; Chao and Huggins, 2005). The resulting estimates are that of
abundance for the effective sampling area, which is determined by the
trap configuration used for sampling and is specific to each species.
For monitoring purposes, the effective sampling area does not need to
be defined, so long as it does not change during the life of the monitor-
ing program.

Unbiased abundance estimation is effort intensive, often prohibi-
tively so for large-scale monitoring programs, thus reducing its effec-
tiveness as a monitoring metric option (McKelvey and Pearson, 2001).
In addition, detecting change in abundance is not always the desired
monitoring goal. Conversely, occupancy can be used as an alternative
monitoring goal and usually requires substantially less sampling effort
than abundance estimation (MacKenzie et al., 2002). Occupancy is de-
fined as the proportion of sites occupied by a particular species regard-
less of its abundance at any time (MacKenzie et al., 2006). Analogous to
abundance estimation with mark-recapture data, unbiased methods
exist for estimating occupancy that account for imperfect detection
(MacKenzie et al., 2006). The resulting estimates aremade at broad spa-
tial scales (generally estimated as a proportion of all sites sampled) and
thus, occupancy estimates are not applicable to the same spatial scale
changes as abundance estimates (estimated for individual sites). We
evaluated estimators of abundance and occupancy to illustrate comple-
mentary strengths and weaknesses of each when used in a longitudinal
spatial-temporal monitoring program.

Step 2. Select Level of Sensitivity

Power, Effect Size, and Time Period

The next set of decisions thatmanagers need tomakewill determine
how sensitive themonitoringprogramwill be to change,which also dic-
tates the level of effort that will need to be invested into data collection.
The sensitivity of a monitoring program is defined by power, effect size,
and time period (Fig. 1B). Power is defined as 1minus the probability of
failing to detect a change of given effect sizewhen one occurs, where ef-
fect size is theminimum change expected to be detected over a defined
time period. Defining the sensitivity of a single-species monitoring pro-
gram is rather straightforward (e.g., 90% probability of detecting a 30%
decline that occurs over 5 yr). When considering multiple species, a
minimum level of sensitivity might be set as a target to reach for all or
a specified number of species included in the monitoring program.

If all of the decisions that determine the level of sensitivity are made
a priori, the subsequent steps in the process of program development
will be simplified. However, as is often the case, these decisionsmay de-
pend on final estimation of program costs. In such cases, it is useful to
develop multiple monitoring scenarios that represent a range of sensi-
tivities. The directive for our monitoring program development did
not include sensitivity specifics; thus, we developedmonitoring scenar-
ios that represent a range of effect sizes, time periods, and implementa-
tion costs. We considered three time periods for evaluating power. We
selected 3 yr as this represented a duration that might capture a re-
sponse to a short-term impact (e.g., wet year or management action).
We expected 5-yr monitoring durations to begin to disentangle trends
from responses to short-term weather patterns but potentially identify
significant trends quick enough to respond through management deci-
sions and 10-yrmonitoring durations to be able to detect trends despite
longer-term weather phenomena (e.g., a 4-yr drought). We selected a
single level of power to keep the number of scenarios to evaluate at a
manageable number. A commonly used value for power in statistical
studies is 0.80 (Cohen, 1992; Lenth, 2001); however, we selected a
power of 0.90 as we intended to keep the probability of failing to detect
changes at or below 10% in our recommendations.

Step 3. Collect Preliminary Data

Preliminary data are critical for developing a monitoring program in
that they allow the researcher to determine the level of effort required
to meet stated objectives with the selected level of sensitivity. Required
effort may be determined from preexisting data; however, the prelimi-
nary data should be collected using similarmethods such that precision
of estimatedmetrics is representative of what is expected from the pro-
posed program. Similarly, spatial variation in preliminary data should
also be representative of what is expected for the spatial extent of the
population to be monitored. Thus, field methods must be selected be-
fore preliminary data can be collected (or identified from previous ef-
forts). As is the case with any field study or monitoring program,
initial sampling methods should be based on past experience and a
thorough review of relevant literature to collect data to bestmeet stated
objectives. However, a well-designed pilot study should identify oppor-
tunities for comparing and refining methods to improve efficiency (Fig.
1C). This will likely require additional design considerations not typi-
cally included in actual monitoring programs, such as using multiple
methods for capturing or detecting individuals, and includingmeasures
of effort associated with each observation or capture (e.g., time of each
observation during a timed point count, distance traveled for each ob-
servation during transect surveys). Such ancillary data will allow for di-
rect comparisons among methods and determine optimal within-
sampling effort (e.g., duration of each sample, length of sampling tran-
sect) to balance the desire to reach a specified detection or capture
probabilitywith the need to sample a particular number of sites that be-
comes apparent after a power analysis is conducted. Because we were
unaware of any data that met the requirements outlined earlier for
the small mammal assemblage in our study area, we planned and exe-
cuted a pilot study based on a literature review and the collective expe-
rience of our research team.

Select Field Methods

The optimal field methods for a monitoring programwill depend on
a number of factors, including the focal species or taxa, and the selected
metrics. Managers should select methods that maximize the data re-
quired for metric estimation while minimizing effort (Field et al.,
2005). We identified large (7.6 × 9.5 × 30.5 cm, model XLK) and
extralarge (10.2 × 11.4 × 38 cm, model XLF15) Sherman live traps (H.
B. Sherman Traps, Inc., Tallahassee, FL) as effective for the focal species
for our monitoring program. Our target assemblage of small mammals
excluded extant species of squirrels (family Sciuridae) and pocket go-
phers (family Geomyidae). We excluded squirrels from consideration
because those present on the study sites were diurnal and, therefore,
would have required a different strategy for monitoring than the other
species. Similarly, we excluded pocket gophers since they were almost
exclusively fossorial and would have required trap modifications and
special trap placement to monitor. If the objectives of a monitoring pro-
gram included populations of these or similar species, such as shrews
(family Soricidae), additional trapping methods would need to be
incorporated.

Trap Configuration
We recognized that our selected metrics of abundance and occu-

pancy may be more efficiently monitored with distinct trap
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configurations. Square grids with modest spacing (10–20 m between
traps) are typically used for estimating abundance in small mammal
studies as they provide acceptable levels of recapture rates formost spe-
cies (Nichols and Pollock, 1983). For species detection and occupancy
modeling, long transects with wider trap spacing may be preferred as
they are more likely to encounter a greater diversity of vegetation,
which in turn should increase diversity detected (Caughley and Sinclair,
1994; Krebs, 2009). Because wewere interested in both abundance and
occupancy as potential monitoring metrics, we attempted to use an
equal number of square grids and elongated transects each year.

We modified trap configurations across years of our study in an at-
tempt to refine our fieldmethods.We varied our trap station configura-
tion between 11 × 11 and 13 × 13 with 15–20 m spacing (3.24–4.4 ha
grids; Bowman et al., 2001; Manley et al., 2006). To accommodate
larger-bodied individuals, we also placed an extralarge Sherman trap
at every second to third station. On the transects, we used trap configu-
rations of 11 × 4, 15 × 3, and 19 × 3 with 25-m spacing (1.75–2.25 ha
transects). We also placed extralarge traps at 50–75 m spacing along
the outer transects.

Trapping Protocol
We placed traps unopened and not baited, 3 nights before trapping

to allow individuals to become accustomed to the traps (Chitty and
Kempson, 1949). We positioned traps near habitat features that could
be used as cover along travel corridors within 2 m of the grid point
and covered traps with local substrate (Jones et al., 1996). Beginning
the afternoon before the first trap night, we opened and baited traps
and checked and closed them each morning. When setting traps, we
baited each with a teaspoon (4.9 mm3) of peanut butter and rolled
oats mixture prepared in a 4:1 ratio by weight and provided a 2.54 ×
2.54 cm Nestlet (Ancare) for bedding material. Nestlets are squares of
pulped cotton that can be shredded into bedding by captive animals
and are commonly used in laboratory settings. The minimum number
of nights of trapping for mark-recapture analyses is 2; however, each
additional night of trapping adds data that can improve estimates as
long as population closure can be assumed (White et al., 1982). To en-
sure we had sufficient data to evaluate tradeoffs between intensity of
trapping at a single site and number of sites trapped, we trapped each
site for 6 nights.Most often, this occurred over consecutive nights; how-
ever, we suspended trapping when overnight temperatures were fore-
casted below 4°C or the probability of precipitation was N 50%. Such
breaks in trapping do not affect estimates so long as the population
can be assumed to be closed from the first to the last day of trapping
(White et al., 1982). We identified the species of each individual cap-
tured. However, we combined two pairs of species into species groups
due to difficultywith field identification: Ord’s kangaroo rat (Dipodomys
ordii)/Gulf Coast kangaroo rat (Dipodomys compactus) and hispid
pocket mouse (Chaetodipus hispidus)/Mexican spiny pocket mouse
(Liomys irroratus). We marked each individual with a pattern of four
spots using blue, green, purple, and redmarkers to create a unique iden-
tification on the ventral surface below the neck (Root et al., 1999).

Define Probabilistic Sampling Scheme

Use of a probabilistic sampling scheme is critical to ensure that spa-
tial variation is not underrepresented in preliminary data, which would
result in power estimates that are biased high. In addition, probabilistic
sampling ensures that population changes can be inferred from changes
detected by the monitoring program (Morrison et al., 2008). We used
stratified random sampling to select our trapping locations for
collecting our preliminary data. We created preliminary strata by
using a Global Information System (GIS) vegetation layer of predomi-
nant species, physiognomic structure, and functional habitat similarity
separately for each ranch (McLendon et al., 2013a, b). This resulted in
8 strata for the El Sauz Ranch and 10 strata for the San Antonio Viejo
Ranch. We then allocated our sampling efforts proportional to the
relative area of each stratum, with a minimum of two sampling sites
assigned to each stratum on each ranch. We randomly selected sam-
pling locations within strata with a minimum buffer of 100 m from
the edge to minimize influence of adjoining strata. We modified our
sampling effort (number of sites trapped and trap configuration) each
year in order to optimize effort; however, we attempted to sample the
same sites in successive years to isolate interannual variation. Each
year, we systematically assigned the order in which we sampled each
site to reduce travel time but were careful to avoid within-season, tem-
poral clustering of sampling sites of a given stratum.

Collect Data

We captured animals from mid-January to mid-April 2014–2016.
We trapped small mammals on a total of 61 transects and 59 grids
over the 3 years of the study and detected 11 species or species groups
(Table 2). Detections were inconsistent and captures extremely low for
marsh rice rat (Oryzomys palustris) and roof rat (Rattus rattus); there-
fore, we excluded these species from consideration in our monitoring
program development.

Calculate Effort Used

In addition to collecting data specified by the chosen metrics, it is
also critical to calculate the effort required to do so. These additional
data allow for accurately assigning costs to specific monitoring scenar-
ios, as well as refining field methods for optimizing efficiency. We re-
corded the number of field technicians and total time required to
establish, check, and remove trapping grids and transects throughout
our study. We also calculated time necessary for commuting and data
entry associated with a single sampling site. We calculated effort cost
estimates using our technician costs from 2016. Specifically, we paid
technicians $2 000/mo, which translated to direct costs of $3 100/mo,
or about $19.38/hr.

Estimate Metrics and Variance

The final step before conducting a power analysis is to estimatemet-
rics and associated levels of variance relative to the effort used in
collecting the preliminary data. These estimates should be generated
using the same methods and models that are proposed for the actual
monitoring program for an accurate assessment of power.

Abundance
We used the 6-d capture histories of individuals of each species for

estimating abundance on individual sites in Program MARK using the
Huggins’ p and cmodel (White and Burnham, 1999). Failure to account
for variation in capture probability generally results in biased estimates
of abundance (Otis et al., 1978; Chao andHuggins, 2005).We accommo-
dated potential behavioral responses in our candidate set of models by
using a behavioral model as our base model that allows probability of
first capture (p) to differ from probability of recapture (c; White et al.,
1982). Neophobia is a termused to describe the response of certain spe-
cies that avoid unfamiliar features, such as a trap, but become more
likely to enter the trap with each day of trapping. Although our place-
ment of traps 3 days before the beginning of trapping was an attempt
to minimize the effects of neophobia, we did not assume these efforts
were entirely successful. Thus, we allowed for the potential of
neophobia by including a term for a linear time trend in p in our candi-
date set of models. We also hypothesized that the square grids with
narrower trap spacing would result in different p and c than the tran-
sects with wider trap spacing by including models with a term for grid
shape in p and models with a term for grid shape in both p and c. This
resulted in a set of six candidate models that we fit to each species’
dataset for each year (Table 1).



Table 1
Candidate set of models and associated number of parameters (k) for estimating popula-
tion abundance andoccupancy rates for smallmammals fromdata collected in2014, 2015,
and 2016 on East Foundation lands, southern Texas, United States. Abundance model pa-
rameters are probability of first capture (p) and probability of recapture (c). Occupancy
model parameters are probability of detection (pdetection) and probability of occupancy
(ψ). Covariates are linear time trend (T) and trap configuration (shape). The latter was a
grouping covariate for individuals captured on grids or transects.

Abundance models k Occupancy models k

p (T + shape), c (shape) 5 pdetection (T + shape), ψ (.) 4
p (T + shape), c (.) 4 pdetection (T), ψ (.) 3
p (shape), c (shape) 4 pdetection (shape), ψ (.) 3
p (shape), c (.) 3 pdetection (.),ψ (.) 2
p (T), c (.) 3
p (.), c (.) 2
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We used model averaging based on weights from Akaike’s Informa-
tion Criterion adjusted for small sample sizes (AICC) to generate an esti-
mate of abundance and associated SE for each species at each site
trapped, treating sites trapped in multiple years as independent sam-
ples (Burnham and Anderson, 2002).We removedmodels that resulted
in poorly estimated parameters (typically estimates of P b 0.001 and
abundance N 10 000) before model averaging. While thesemodels gen-
erally garnered extremely low AICc weights, the resulting abundance
estimates weremanymagnitudes greater thanwhat is biologically pos-
sible and have the potential to greatly bias model averaged estimates. If
a minimum of three models were not remaining after model censoring,
we concluded that the data were too sparse for model fitting and
discontinued analysis of the specific subset of the data.We used the un-
conditional SE reported by ProgramMARK, which accounts for both the
weighted variance conditional on each model in the candidate model
set, and variance associated with model uncertainty (Burnham and
Anderson, 2002). We conducted multimodel inference using data
from the first 4, 5, and all 6 d of trapping separately to generate abun-
dance and variance estimates for each duration and species
combination.

Kangaroo rats were uncommon in 2014, with a total of 33 captures
at six separate sites (Table 2). These data were insufficient for estimat-
ing abundance; however, we did obtain sufficient captures for estima-
tion in 2015 and 2016. We used the average estimates from the 2015
and 2016 data for determining power for monitoring abundance for
kangaroo rats.

We were unable to fit a minimum of three abundancemodels to the
pocket mice dataset in 2016, and many of the estimates from 2014 and
2015 were extremely imprecise. We assumed these issues were due to
high heterogeneity in p caused by grouping species that likely varied in
Table 2
Number of total captures of 11 species or species groups captured on square grids (S) and
rectangular transects (R) in 2014, 2015, and 2016 on East Foundation lands, southern
Texas, United States. Sites sampled refers to number of grids and transects we used in each
yr of the study.

2014 2015 2016

Species S R Total S R Total S R Total

Northern pygmy mouse 282 91 373 68 43 111 100 30 130
Pocket mice1 484 110 594 388 158 546 82 54 136
Kangaroo rats2 12 21 33 281 161 442 214 84 298
Southern Plains woodrat 109 5 114 139 69 208 307 115 422
Northern grasshopper
mouse

536 133 669 817 533 1350 67 77 144

Marsh rice rat 1 0 1 0 2 2 0 0 0
White-footed mouse 890 434 1324 1623 862 2485 631 343 974
Merriam’s pocket mouse 467 96 563 148 59 207 59 11 70
Roof rat 0 0 0 0 0 0 24 7 31
Fulvous harvest mouse 48 36 84 225 69 294 59 19 78
Hispid cotton rat 385 53 438 174 41 215 516 364 880
Sites sampled 15 11 26 22 28 50 22 22 44

1 Includes captures of hispid pocket mice and Mexican spiny pocket mice.
2 Includes captures of Ord’s kangaroo rats and Gulf Coast kangaroo rats.
relative abundance at each site, as well as their propensity to enter a
trap. Therefore,we did not run power analysis for estimating abundance
for these species andwe excluded this group from further consideration
for monitoring abundance. We were also unable to fit a satisfactory
number of models to Merriam’s pocket mouse (Perognathus merriami)
and grasshopper mouse (Onychomys leucogaster) datasets from tran-
sects in at least 1 yr and so only conducted power analyses for abun-
dance estimation for these species using data from square grids.

Considering the complete set of data, white-footed mice
(Peromyscus leucopus) had the greatest estimated abundance on grids
and transects (31.8 and 22.7, respectively; Table 3, Fig. 4). Southern
Plains woodrat (Neotoma micropus) had the lowest estimated abun-
dance on grids, with 11.3 individuals, and fulvous harvest mice
(Reithrodontomys fulvescens) had the lowest estimated abundance on
transects, with 4.7 individuals. In general, the abundance estimates
had substantially improved coefficient of variation (CV) with the com-
plete set of 6 d than with data of shorter durations. The exceptions
were for northern pygmy mouse (Baiomys taylori) on both trap config-
urations andMerriam’s pocketmouse on grids; CVwere lower using 5 d
of trapping. In addition, data from grids generally resulted in abundance
estimateswith lower CV than data from transects.Weused these results
to select 6 d of trapping using square grids for estimating power and
making recommendations for monitoring both abundance and occu-
pancy simultaneously.

Occupancy
We used the record of detections at each sampling site over the 6-d

trapping period for a given species to estimate site occupancy rates (ψ)
and detection probabilities using single-season occupancy models in
Program MARK (White and Burnham, 1999). Detection probability (p-
detection) is defined as the probability of detecting an individual of a par-
ticular species, given it occupies the sampling site. We assumed the
different trap configurations would have minimal impact on whether
a site was occupied by a particular species, but because of the differ-
ences in the number of traps used, they may affect the pdetection There-
fore, we included a term for grid configuration in pdetection. Neophobia
is known to affect the probability of individuals entering traps, and par-
ticular species appear to be more prone to it than others (Faust et al.,
1971). It is intuitive, therefore, to assume that neophobia may also re-
sult in a time trend in pdetection in occupancy studies. To account for
this potential source of variation, we also included a term for describing
a linear trend in pdetection associated with trap day. We considered the
global model with terms for trap configuration and a linear time trend
to describe variation in pdetection, and all three possible reduced models
in our candidate set of models (see Table 1).

We used model averaging based on AICC weights to generate an es-
timate ofψ and associated unconditional SE for each species in each year
(Burnham and Anderson, 2002). We then averaged these estimates
across all 3 yr of data and repeated these steps using only the first 5 d
of trapping, first 4 d of trapping, and again, using only the first 3 d of
trapping to generate separate estimates from 3, 4, 5, and 6 d of trapping
for monitoring occupancy.

We used capture data for nine species to estimate annual occupancy
rates and associated unconditional SE for each year with the various
trapping durations and then averaged these values across all 3 yr
(Table 4). Average estimated occupancy rates were lowest for the
northern pygmy mouse and highest for the white-footed mouse, with
proportion of sites occupied for northern pygmy mouse ranging be-
tween 0.21 and 0.25 and for white-footed mouse ranging between
0.81 and 0.84, depending on the number of days of trapping data
used. In general, occupancy estimates increased only slightly with the
addition of each day of trapping data. The exception was Merriam’s
pocket mouse, which had a reduction in estimated occupancy rates
with additional days of data after 4 d (from 0.63 to 0.61). We used
these results, along with the relatively stable estimates of SE with vari-
ous days of trapping to select 4 d of trapping for determining power and



Table 3
Average estimates for abundance (N̂̂), standard deviation (SD), coefficient of variation (CV), and the average number of square grids (S) and rectangular transects (R) estimates were de-
rived for (n) each year on East Foundation lands, southern Texas, United States. Blanks indicate data were insufficient for generating useful estimates.

Species Trap config. Days of trapping

4 5 6

N ̂̂ SD CV n N ̂̂ SD CV n N ̂̂ SD CV n

Northern pygmy mouse S 40.2 403.5 10.05 4.3 18.1 4.0 0.22 4.7 22.4 6.5 0.29 5.0
R 8.1 9.9 1.22 4.3 7.8 2.0 0.25 4.7 9.1 2.4 0.26 4.7

Kangaroo rats1,2 S 17.9 26.5 1.48 12.5 14.1 10.4 0.74 12.5
R 11.8 15.5 1.32 9.5 9.2 8.5 0.91 10.5

Southern Plains woodrat S 10.4 12.3 1.18 13.7 11.3 8.7 0.77 14.3
R 25.5 241.0 9.46 10.3 11.2 22.6 2.01 10.3

Northern grasshopper mouse S 12.4 15.3 1.24 14.0 13.4 11.8 0.89 14.0 14.4 11.3 0.79 14.0
R

White-footed mouse S 29.6 57.7 1.95 17.0 31.8 44.2 1.39 17.0
R 23.9 180.1 7.55 16.0 22.7 51.1 2.25 16.3

Merriam’s pocket mouse S 16.0 21.8 1.37 12.3 25.7 100.1 3.89 13.0
R

Fulvous harvest mouse S 11.6 17.2 1.48 8.7
R 4.7 7.7 1.63 7.7

Hispid cotton rat S 23.4 14.2 0.61 6.0 28.3 14.5 0.51 6.7 29.5 5.0 0.17 6.7
R 13.4 67.3 5.00 5.3 19.4 16.1 0.83 5.0 19.0 4.4 0.23 7.0

1 Combined estimates for Ord’s kangaroo rat and Gulf Coast kangaroo rat.
2 Data were averaged from 2015 and 2016 only.
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making recommendations for monitoring occupancy in the absence of
monitoring abundance.

Refine Field Methods

Examination of preliminary data, including calculations of associated
effort, allows researchers the opportunity to optimize their sampling ef-
fort for the final monitoring scenario designs (Fig. 1C —feedback loop).
In our example, we used preliminary data to maximize effort with re-
spect to trap configuration and seasonal timing.

Trap Configuration
We recorded the start and end times for each day of trapping at each

site and altered the trap configuration from the previous yr’s effort in an
attempt to optimize the balance in area sampled and time required to
check traps and process animals.

Seasonal Timing
Weattempted to identify and definepatterns in captures across each

trapping season for each species of small mammal in order to optimize
sampling effort and to provide meaningful recommendations of timing
of trapping for long-term monitoring purposes. We quantified propor-
tional daily captures per unit effort by species over the trapping period
separately for 2014, 2015, and 2016. We used these proportions to cal-
culate averages using a 5-dmovingwindow, excludingdays not trapped
Table 4
Average of the annual occupancy estimates (ψ) and associated standard error (SE) for 9
species of small mammals captured in 2014, 2015, and 2106 on San Antonio Viejo and
El Sauz lands in southern Texas, United States, using 3, 4, 5, and all 6 d of trapping data.

Days of trapping

3 4 5 6

Species ψ SE ψ SE ψ SE ψ SE

Northern pygmy mouse 0.21 0.07 0.23 0.07 0.24 0.07 0.25 0.07
Pocket mice 0.69 0.07 0.71 0.07 0.75 0.06 0.79 0.05
Kangaroo rats 0.35 0.09 0.38 0.09 0.40 0.08 0.40 0.08
Southern Plains woodrat 0.53 0.09 0.56 0.09 0.59 0.09 0.61 0.09
Northern grasshopper mouse 0.67 0.07 0.68 0.07 0.68 0.07 0.68 0.07
White-footed mouse 0.81 0.06 0.82 0.06 0.83 0.06 0.84 0.06
Merriam’s pocket mouse 0.53 0.12 0.63 0.10 0.62 0.09 0.61 0.09
Fulvous harvest mouse 0.29 0.08 0.30 0.08 0.37 0.08 0.40 0.08
Hispid cotton rat 0.26 0.06 0.28 0.07 0.29 0.07 0.31 0.07
because of inclement weather. Seasonal weather in southern Texas is
highly variable and likely translates to shifts in annual patterns in ani-
mal activity. We accounted for annual variation by averaging the 5-d
moving windows across all 3 yr of records.

Our calculations for seasonal animal activity indicate high variability
with seasonal patterns for some species (Fig. 3). Approximately half of
all captures of hispid cotton rats (Sigmodon hispidus) occurred during
a 10-d period centered on the third week of February (Fig. 3C). Approx-
imately 35% of all captures of fulvous harvest mice also occurred in this
period of February. There were only three captures of hispid cotton rats
before d 40 and a single capture of a northern pygmymouse before d 45.
Other species, such as kangaroo rats and Southern Plains woodrats, ap-
peared to have multiple peaks in activity that were spaced throughout
the trapping period (Fig. 3A).

Step 4. Conduct Power Analyses

Conducting a power analysis for detecting trends requires multiple
steps that involve simulating population trajectories according to the ef-
fect size and time periods outlined in step 2 with estimates of the mon-
itoring metric generated in step 3 as the starting values (Fig. 1D).
Typically, thousands of trajectories are simulated using the variance as-
sociatedwith themetric estimate to simulate sampling variance (Gibbs,
2000). Some test is then performed to determine if there is significant
evidence for a trend line with a slope not equal to 0 for each simulation.
Further simulations can then be made by manipulating effort, such as
number of areas sampled, and assuming some relationship between
sample size and the precision of resulting estimates. Power is then cal-
culated as a proportion of each simulated dataset under a specific sce-
nario of effect size, time period, and effort for which a slope not equal
to 0 was identified. Since metric estimates and variance generally vary
among species, it will likely be informative for developing monitoring
scenarios to conduct separate power analyses for at least a representa-
tive subset of species that are under consideration for inclusion in the
proposed monitoring program.

We ran a comprehensive power analysis for the white-footed
mouse, which was both abundant (average N̂̂ = 31.8, SE = 11.1) and
common (estimated ψ = 0.82, SE = 0.058); hispid cotton rat, which
was abundant (average N̂̂= 29.5, SE= 2.2) but uncommon (estimated
ψ = 0.28, SE = 0.066); and fulvous harvest mouse, which had low
abundance (average N ̂̂ = 11.6, SE = 5.6) and was uncommon (esti-
mated ψ = 0.31, SE = 0.075; Appendix A). We used the SE associated
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Figure 3. Running 5-d average daily percent of total annual captures per unit effort,
averaged across all 3 yr of trapping for each species captured on the East Foundation’s
San Antonio Viejo and El Sauz Ranches, Texas, United States, 2014–2016.
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with each parameter estimate to simulate sampling variance and as-
sumed a constant CV over the projected decline. Our power analyses
suggested that detecting an annual change in abundance of b 10% at a
power of 0.90 for the white-footed mouse would not be possible with
≤ 50 grids, even over a 10-yr duration (Fig. A.1). Our data showed that
a 20% annual change would be detected with a power of 0.90 with 25
grids after 10 yr (Fig. A.2). This effect size represented projected abun-
dances after 10 yr of either 4 animals for a negative growth or 164 ani-
mals for a positive growth, with a beginning population size of 32
individuals (Table A.1).

Due to the low CV associated with hispid cotton rat abundance esti-
mates (0.17), we predicted small effect sizes detectablewith fewer trap-
ping grids than for other species. Our simulations suggested that 15
grids would provide power of 0.90 to detect annual changes in abun-
dance of 11% after 3 yr, 5% after 5 yr, and 2% after 10 yr (Fig. A.3). We
predicted a 10% annual change after 3 yr would be detected with a
power of 0.90 with 15 grids, a 5% annual change after 5 yr would be de-
tected with a power of 0.90 with 20 grids, and a 1% annual change after
10 yr with a power of 0.90 with 40 grids (Fig. A.4).

Our power analysis suggested it should be possible to detect a 10%
annual change in abundance after 10 yr for fulvous harvest mice with
a power of 0.90 with 50 grids (Fig. A.5). We also estimated it was possi-
ble to detect a 20% annual change in abundance after 10 yr with power
of 0.90 with around 20 grids (Fig. A.6). This effect size represented
projected abundances after 10 yr of either 2 animals for a negative
growth, or 60 animals for a positive growth, with a beginning popula-
tion size of 17 individuals (Table A.3).

With a 50% net decline in proportion of sites occupied by white-
footed mice occurring over 3 yr, we predicted the change would be de-
tected with power of 0.90 with sampling 30 sites each yr (Fig. A.7). A
similar net reduction occurring over 5 yr should be detectable with 23
grids, and over 10 yr it should be detectable with as few as 15 grids.
We predicted a net change of 25% over 10 yr would be detected at
power of 0.90 with approximately 48 sampling sites (Fig. A.8).

Effect sizes for changes in occupancy rates with power of 0.90 for
hispid cotton rats were large (poor) but improved with 45 or more
sites sampled (Fig. A.9). We predicted that with a power of 0.90, 45
sites would allow for detecting a net change in occupancy of 65% over
10 yr, 75% over 5 yr, and 85% over 3 yr (Fig. A.10).

Our power analysis for fulvous harvest mouse occupancy suggested
substantial improvements in effect size detected with power of 0.90 by
increasing sample sizes above 45 sites sampled (Fig. A.11). We pre-
dicted that with a power of 0.90, between 30 and 35 sites would allow
for the detection of a net change of 65% over 10 yr, a net change of
75% over 5 yr, and a net change of 85% over 3 yr (Fig. A.12).

Step 5. Develop Monitoring Scenarios

If all objectives and level of sensitivity were identified a priori, a sin-
glemonitoring scenariomay be developed from the power analysis that
most effectivelymeets the stated objectives based on some criteria, such
as cost. In situations where these decisions have not been made, it is
useful to develop multiple, alternative monitoring scenarios based on
a range of reasonable targets or required effort (Fig. 1E). Once the alter-
native scenarios are defined, the resulting level of sensitivity will need
to be calculated for each species included. Finally, costs to implement
each alternative scenariomust be estimated so that tradeoffs of sensitiv-
ity and costs can be compared.

In our example, we did not have a stated effect size and we consid-
ered three separate durations. Thus, we considered a range of values
as alternative monitoring scenarios. In addition, since we included two
potential monitoring metrics, we identified separate scenarios specific
to each metric. We used the results from our power analysis that we
conducted on a subset of species to develop four distinct monitoring
scenarios. We then ran power analyses for the remaining species for
the level of effort specified by each scenario to determine the resulting
species-specific level of sensitivity. Because our objectives were to de-
velop a monitoring program for multiple species and it is unreasonable
to expect all species to occupy each sampling location, we corrected the
sample sizes in our recommendations for monitoring abundance with



Figure 4. Estimates and variance for abundance from 6 d of trapping and occupancy from 4 d of trapping for species captured on the East Foundation’s San Antonio and El Sauz Ranches in
southern Texas, United States, 2014–2016.Wewere unable to generate a useful estimate of abundance for the pocketmice complex. Note that our abundance estimates - the SE forwhite-
footed mouse (−12.4), Merriam’s pocket mouse (−74.4), and fulvous harvest mouse (−5.6) extend below 0, and our abundance estimate + SE for Merriam’s pocket mouse (125.7)
extends beyond the scale displayed.
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the occupancy rate we estimated for each species. For instance, using a
monitoring scenario with 50 sampling sites each yr, if a particular spe-
cies had an estimated occupancy of 0.50, we would base our estimate
of effect size on an effective sample size of 25 sites.

We developed 4 monitoring scenarios and estimated power and as-
sociated costs for each. Two of these scenarios involvedmonitoring both
abundance and occupancy, so they were based on trapping 6 consecu-
tive d using trapping grids. The other two involved only monitoring oc-
cupancy, so they were based on trapping for 4 consecutive d using
transects.

From our analysis of the patterns of captureswe observed in our 3 yr
of data, we recommend the planned duration of trapping in our study
area in southern Texas be centered around Julian date 75 (mid-
March). In addition, we recommend a small mammal trapping season
not begin before Julian date 45 (mid-February), as it appears that north-
ern pygmy mouse and hispid cotton rat captures are low before this
date. We also recommend trapping end before Julian date 105 (mid-
April), as our sampling beyond this date was insufficient to allow
for prediction of capture rates. From our efforts to refine field methods
to optimize the tradeoff between area of coverage and effort, we
recommend using square grids of 121 stations with 20 m spacing
Table 5
Labor cost estimates for trapping a single transect for 4 nights, a single grid for 6 nights, and c
assemblage on East Foundation lands in southern Texas, United States. Setup is the estimated t
traps closed during the day to reduce trapmortality; therefore, we estimate the time to check t
and open traps and a single trip to set up sites. Total costs are based on costs to employ techni

Time (hr)

Trapping strategy Set up Check Open in evening Data entry Travel

Transect (4 d) 5.25 8.25 2 1 33.75
Grid (6 d) 12.25 23 6 3.5 48.75
and rectangular transects with an arrangement of 3 × 19 trap
stations with 25-m spacing for monitoring small mammals on our
study area.
Scenario A: Maximize Number of Species for Detecting a 10% Annual
Change in Abundance After 10 Yr

We developed scenario A to maximize the number of species for
which a biologicallymeaningful change in abundance could be detected
after 10 yr with what we considered to be a reasonable level of effort.
Scenario A required the use of 40 square trapping grids trapped for 6
consecutive d. We estimated with scenario A that it should be possible
to detect annual changes in abundance of ≤ 10% after 10 yr for four spe-
cies (Table 6; hispid cotton rat, northern pygmymouse, Southern Plains
woodrat, and northern grasshopper mouse). With this same effort, we
estimated that it will also be possible to detect net declines in occupancy
rates of b 50% after 10 yr for five species (Table 7; white-footed mouse,
pocket mice, northern grasshopper mouse, Southern Plains woodrat,
andMerriam’s pocket mouse). The estimated annual labor costs for sce-
nario A were $72 462 (see Table 5).
osts estimates for Scenarios A–D developed for long-term monitoring the small mammal
ime to locate each trap station at a site and place traps. Our recommendations are to keep
raps in themorning and open them each evening. Travel time includes daily trips to check
cians during the 2016 field season ($3 100/mo, or $19.375/hr).

Total hours Total cost Scenario

A B C D

50.25 $974 60 30
93.5 $1,812 40 20

$72 463 $36 231 $58 416 $29 208



Table 7
Sensitivity estimates for monitoring occupancy of small mammals under Scenario A for
the East Foundation, southern Texas, United States.We developed Scenario A tomaximize
number of species forwhich a 10% change in abundance could be detected after 10 yrwith
power of 0.90 and involves trapping 6 consecutive nights with 40 square grids. The first 2
columns are the values for occupancy (Ψ -hat) and standard error (SE) we used for the
power simulations. The remaining columns are the smallest negative net percent change
in occupancy we estimate should be detectable after 5 and 10 yr of sampling and the
projected, respective occupancy rate for each species.

5-yr effect size 10-yr effect size

Net %
decline

Projected
ψ

Net %
decline

Projected
ψ

Species Ψ-hat SE

White-footed mouse 0.84 0.06 35 0.54 30 0.59
Pocket mice 0.79 0.05 40 0.47 35 0.51
Northern grasshopper
mouse

0.68 0.07 50 0.34 40 0.41

Southern plains woodrat 0.61 0.09 55 0.27 45 0.33
Merriam’s pocket mouse 0.61 0.09 60 0.25 45 0.34
Kangaroo rats 0.40 0.08 75 0.10 60 0.16
Fulvous harvest mouse 0.40 0.08 75 0.10 60 0.16
Hispid cotton rat 0.31 0.07 80 0.06 70 0.09
Northern pygmy mouse 0.25 0.07 90 0.02 75 0.06
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Scenario B: Monitor a Selected Subset of Species for Detecting a 25% Annual
Change in Abundance After 10 Yr

Wedesigned scenario B to allow formonitoring abundancewith less
sensitivity than with scenario A and therefore require less effort. Sce-
nario B involved trapping20 square grids for 6 consecutive d. Under sce-
nario B,we estimated that it should be possible to detect annual changes
in abundance b 10% for two species (hispid cotton rat and northern
pygmy mouse) and ≤ 15% for two additional species (Southern Plains
woodrat and northern grasshopper mouse) with 10 yr of trapping
(Table 8). This effort should also allow detection of declines in net occu-
pancy rate b 50% for two species (white-footedmouse and pocketmice)
and at ≤ 60% for an additional three species (northern grasshopper
mouse, Southern Plains woodrat, and Merriam’s pocket mouse) after
10 yr (Table 9). The estimated annual labor costs for scenario B were
$36 231 (see Table 5).

Scenario C: Monitor Occupancy Only, with Greater Sensitivity but Less Cost
Than with Scenario A

We designed scenario C based on the objective of monitoring occu-
pancy only. As such, scenario C used 60 transects trapped for 4 consec-
utive d. With this effort, it should be possible to detect net declines in
occupancy after 10 yr between 25% and 35% for three species (white-
footedmouse, pocketmice, and northern grasshoppermouse), between
40% and 50% for another three species (Southern Plains woodrat,
Merriam’s pocket mouse, and kangaroo rats), and between 60% and
70% for the final three species (Table 10; fulvous harvest mouse, hispid
cotton-rat, and northern pygmy mouse). The estimated annual labor
costs for scenario C were $58 415 (see Table 5).

Scenario D:Monitor Occupancy Only, with Greater Sensitivity, but Less Cost
Than with Scenario B

Wedesigned scenario D based onmonitoring only occupancywith a
substantial reduction in costs from Scenario C. The effort for scenario D
included trapping 30 transects for 4 consecutive d. This effort should
allow power to detect annual changes in occupancy rates after 10 yr be-
tween 35% and 55% for five species (white-footed mouse, pocket mice,
northern grasshopper mouse, Southern Plains woodrat, and Merriam’s
pocket mouse) and between 70% and 85% for the remaining 4 species
(Table 11; kangaroo rats, Fulvous harvest mouse, hispid cotton-rat,
and northern pygmy mouse). The estimated annual labor costs for sce-
nario D were $29 207 (see Table 5).
Table 6
Sensitivity estimates formonitoring abundance of small mammals under Scenario A for the East
of species forwhich a 10% change in abundance could bedetected after 10 yrwith power of 0.90
values for population size (N̂̂) and standarddeviation (SD)weused for the power simulations. E
locations (40) by each species’s estimated occupancy rate. Remaining columns are the smallest
should bedetectable after 5 and10yr of sampling, aswell as theprojected, respective population
effective sample size.

5-yr effect size

% change

annual net

Species N̂̂ SD ne - + -

Hispid cotton rat 29.5 5.02 13 −6 6 −21.9
Northern pygmy mouse 22.4 6.48 10 −12 12 −40.0
Northern grasshopper mouse 14.4 11.33 27 −24 29 −66.6
Southern Plains woodrat 11.3 8.67 24 −24 30 −66.6
Kangaroo rats 14.1 10.41 16 −30 36 −76.0
White-footed mouse 31.8 44.19 33 −38 −85.2
Fulvous harvest mouse 11.6 17.17 16 −48 −92.7
Merriam’s pocket mouse 25.7 100.07 25
Step 6. Initiate Program

Select a Monitoring Scenario

Once all the proposed alternative monitoring scenarios are devel-
oped and the operating costs for each scenario have been presented,
the tradeoffs between level of sensitivity and operating costs can be
evaluated. This type of comparison allows for the consideration of op-
portunity costs where a specific decrease in costs between two scenar-
ios is associated with a specific loss in sensitivity and potential
information. Once identified, the most appropriate scenario should
then be implemented, thus beginning the long-term dataset.
Reassess Power with Additional Data

The scenarios and associated effect sizes presented earlier are based
on statistical power that we estimated from preliminary data we col-
lected over 3 yr of sampling. Although these estimates are statistically
unbiased, we recognize that they are based on simple models that
were fit to limited data. Our understanding of complex natural systems
may only be improved on with additional data. It is therefore critical
that, regardless of the scenario used for long-term monitoring, results
Foundation, southern Texas, United States.We developed Scenario A tomaximize number
and involves trapping 6 consecutive nightswith 40 square grids. Thefirst 2 columns are the
ffective sampling size (ne)was calculated bymultiplying the proposed number of sampling
negative (−) and positive (+) annual and net percent change in abundance we estimate
size for each species. Blanks indicate annual change ofb 50% could not be reachedwith the

10-yr effect size

Projected N̂̂ % change Projected N ̂̂

annual net

+ - + - + − + − +

26.2 23.0 37.2 −2 2 −16.6 19.5 24.6 35.2
57.4 13.5 35.3 −4 4 −30.7 42.3 15.5 31.9

176.9 4.8 39.9 −9 10 −57.2 135.8 6.2 34.0
185.6 3.8 32.2 −9 10 −57.2 135.8 4.8 26.5
242.1 3.4 48.1 −11 13 -65.0 200.4 4.9 42.2

4.7 −14 17 −74.3 310.8 8.2 130.6
0.8 −17 24 −81.3 593.1 2.2 80.4

−23 38 −90.5 1 715.1 2.4 466.6



Table 8
Sensitivity estimates formonitoring abundance of smallmammals under Scenario B for the East Foundation, southern Texas, United States.Wedeveloped Scenario B to detect a 25% change
in abundance after 10 yrwith power of 0.90 for a subset of species, which involves trapping 6 consecutive nightswith 20 square grids. Thefirst 2 columns are the values for population size
(N̂̂) and standard deviation (SD) we used for the power simulations. Effective sampling size (ne) was calculated by multiplying the proposed number of sampling locations (20) by each
species’s estimated occupancy rate. Remaining columns are the smallest negative (−) and positive (+) annual and net percent change in abundance we estimate should be detectable
after 5 and 10 yr of sampling, as well as the projected, respective population size for each species. Blanks indicate annual change of b 50% could not be reached with the effective sample
size.

5-yr effect size 10-yr effect size

% change Projected N̂̂ % change Projected N̂̂

annual net annual net

Species N̂̂ SD ne - + - + - + - + - + - +

Hispid cotton rat 29.5 5.02 6 −8 8 −28.4 36.0 21.1 40.1 −3 3 −24.0 30.5 22.4 38.4
Northern pygmy mouse 22.4 6.48 5 −16 17 −50.2 87.4 11.2 42.0 −6 6 −42.7 68.9 12.9 37.9
Southern plains woodrat 11.3 8.67 12 −34 46 −81.0 354.4 2.1 51.2 −12 14 −68.4 225.2 3.6 36.6
Northern grasshopper mouse 14.4 11.33 14 −35 44 −82.1 330.0 2.6 61.9 −12 15 −68.4 251.8 4.6 50.7
Kangaroo rats 14.1 10.41 8 −42 −88.7 1.6 −15 19 −76.8 378.5 3.3 67.3
Fulvous harvest mouse 11.6 17.17 8 -23 38 −90.5 1715.1 1.1 210.5
White-footed mouse 31.8 44.19 17 -19 26 −85.0 700.5 4.8 254.5
Merriam’s pocket mouse 25.7 100.07 12 −32 N/A −96.9 0.8
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be regularly analyzed to ensure the minimum desired power is being
reached. We recommend that statistical power be reassessed after
each field season of data collection, and methods and sample sizes
should be adjusted as needed (Field et al., 2007; Fig. 1F —feedback
loop). It is important to note that our estimates of detectable effect
size for monitoring abundance are based on estimates of proportion of
sites occupied. For example, our estimate for detectable effect size for
monitoring hispid cotton rat under scenario A (see Table 6) is based
on our estimate that 13 of the 40 sampled sites will be occupied by
the species. If the actual occupancy rate drops, the effort of 40 sites
may no longer provide the power we estimate with this scenario. In ad-
dition, as populations decline, resulting sample sizeswill decline, poten-
tially diminishing precision to the point that estimates are of no use and
possibly leading to the situation where models cannot be fit to the data
using the specified framework. Monitoring objectives that include the
ability to detect declines in abundance or occupancy of species that al-
ready have low abundance or are uncommon may require additional
consideration. It may be more appropriate to simulate data that would
be collected during a decline and attempt to fit models to these data
to more accurately assess power and determine required sample sizes
in these situations.
Table 9
Sensitivity estimates formonitoring occupancy of smallmammals under Scenario B for the
East Foundation, southern Texas, United States. We developed Scenario B to detect a 25%
change in abundance after 10 yrwith power of 0.90 for a subset of species, which involves
trapping 6 consecutive nights with 20 square grids. The first 2 columns are the values for
occupancy (Ψ -hat) and standard error (SE) we used for the power simulations. The re-
maining columns are the smallest negative net percent change in occupancy we estimate
should be detectable after 5 and 10 yr of sampling and theprojected, respective occupancy
rate for each species.

5-yr effect size 10-yr effect size

Net %
decline

Projected
ψ

Net %
decline

Projected
ψ

Species Ψ-hat SE

White-footed mouse 0.84 0.06 55 0.38 40 0.50
Pocket mice 0.79 0.05 55 0.35 45 0.43
Northern grasshopper
mouse

0.68 0.07 65 0.24 55 0.31

Southern plains woodrat 0.61 0.09 75 0.15 60 0.24
Merriam’s pocket mouse 0.61 0.09 75 0.15 60 0.25
Kangaroo rats 0.40 0.08 90 0.04 80 0.08
Fulvous harvest mouse 0.40 0.08 90 0.04 80 0.08
Hispid cotton rat 0.31 0.07 95 0.02 90 0.03
Northern pygmy mouse 0.25 0.07 NA NA 95 0.01
Discussion

We developed four options for long-term monitoring of a small
mammal assemblage on lands in southern Texas in our example. Our
monitoring scenarios included two metrics and a range of required ef-
fort thatwas reflected in the respective effect sizes. Although our results
were specific to our study area, our study should provide a useful frame-
work for others to follow for developing long-term monitoring pro-
grams according to their specific needs.

Selecting sampling sites based on vegetation strata may improve
precision of estimated metrics and hence power of the monitoring pro-
gram if a substantial amount of variation in the metric occurs among
strata and metrics are estimated separately for each stratum
(Scheaffer et al., 2006). We selected sites for our initial study using a
stratified randomsamplingdesign inwhichweusedprimary vegetation
types as our strata and attempted to allocate effort equally among the
most common vegetation types. Our restriction of a minimum of two
sampling sites per stratum potentially resulted in slightly more varia-
tion in our data than what we would expect from a completely random
sample; thus, our power estimates may be somewhat low. Our reason-
ing was to ensure that we captured the majority of variation in species
Table 10
Sensitivity estimates formonitoring occupancy of smallmammals under Scenario C for the
East Foundation, southern Texas, United States.We developed Scenario C tomonitor occu-
pancy only, with greater sensitivity but less cost than with Scenario A. Scenario C requires
trapping 4 consecutive nights with 60 transects. The first 2 columns are the values for oc-
cupancy (Ψ-hat) and standard error (SE) we used for the power simulations. The remain-
ing columns are the smallest negative net percent change in occupancy we estimate
should be detectable after 5 and 10 yr of sampling, and the projected, respective occu-
pancy rate for each species.

5-yr effect size 10-yr effect size

Net %
decline

Projected
ψ

Net %
decline

Projected
ψ

Species Ψ-hat SE

White-footed mouse 0.82 0.06 30 0.58 25 0.62
Pocket mice 0.71 0.07 40 0.43 30 0.50
Northern grasshopper
mouse

0.68 0.07 40 0.41 35 0.44

Southern plains woodrat 0.56 0.09 50 0.28 40 0.34
Merriam’s pocket mouse 0.63 0.10 50 0.32 40 0.38
Kangaroo rats 0.38 0.09 65 0.13 50 0.19
Fulvous harvest mouse 0.30 0.08 75 0.08 60 0.12
Hispid cotton rat 0.28 0.07 75 0.07 60 0.11
Northern pygmy mouse 0.23 0.07 80 0.05 70 0.07



Table 11
Sensitivity estimates for monitoring occupancy of small mammals under Scenario D for
the East Foundation, southern Texas, United States. We developed Scenario D to monitor
occupancy only, with greater sensitivity but less cost than with Scenario B. Scenario D re-
quires trapping 4 consecutive nights with 30 transects. The first 2 columns are the values
for occupancy (Ψ -hat) and standard error (SE) we used for the power simulations. The
remaining columns are the smallest negative net percent change in occupancy we esti-
mate should be detectable after 5 and 10 yr of sampling and the projected, respective oc-
cupancy rate for each species.

5-yr effect size 10-yr effect size

Net %
decline

Projected
ψ

Net %
decline

Projected
ψ

Species Ψ-hat SE

White-footed mouse 0.82 0.06 45 0.45 35 0.54
Pocket mice 0.71 0.07 50 0.35 45 0.39
Northern grasshopper
mouse

0.68 0.07 55 0.31 45 0.37

Southern plains woodrat 0.56 0.09 65 0.20 55 0.25
Merriam’s pocket mouse 0.63 0.10 65 0.22 55 0.29
Kangaroo rats 0.38 0.09 85 0.06 70 0.11
Fulvous harvest mouse 0.30 0.08 90 0.03 80 0.06
Hispid cotton rat 0.28 0.07 90 0.03 80 0.06
Northern pygmy mouse 0.23 0.07 NA NA 85 0.03
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associated with the various vegetation types. We would not recom-
mend that long-term sampling stations be selected in this way as vege-
tation types are likely to change over the duration of the monitoring
program via succession, management, or otherwise. We recommend
selecting a probabilistic sample for permanent sampling sites, and if
stratification is used, soil type or similar descriptor that is less prone
to change is used for the strata (Johnson, 2012). Further, doing so may
improve power or reduce sample size required to detect a specific effect
size.

It is critical that the samemonitoring protocol employed to estimate
power be used for the actual monitoring program for power estimates
to remain valid. In our example, this would require the application of
the same type of bait, ratio of trap types, and placement of traps 3 d be-
fore trapping thatwe used in the current study. Similarly, our power cal-
culations were based on parameter estimates generated from data
collected over 3 yr where wemade slight modifications to the trap con-
figurations to both the grids and transects. Thus, we expect our sensitiv-
ity estimates would only be accurate for monitoring scenarios using an
effort (density of traps, area trapped, and length of transect) similar to
the average ofwhatwe used. By considering thewithin-season patterns
of captures for each species in our example, we were able to make rec-
ommendations regarding the timing of sampling to maximize capture
and detection probabilities. Following our recommendations on timing
of sampling should increase the probability that the power of the mon-
itoring program is at least as high as we predicted. The effect on power
of any deviations from the protocol used to develop proposed monitor-
ing scenarios would need to be assessed before implementing. Other-
wise, managers risk wasting resources and collecting data that are
inadequate for decisions and planning objectives.

Our recommendations for monitoring the system in our example in-
clude collecting data annually. In certain systems, collecting data on al-
ternating years may be desirable for detecting change, particularly
where trends are strictly linear and annual variation is small. However,
due to the highly variable nature of theweather in southern Texas, skip-
ping years of sampling would likely decrease power to detect trends,
particularly nonlinear ones, and offset any cost savings (Guillera-
Arroita and Lahoz-Monfort, 2012). Sampling less than annually would
also result in a greater potential to miss critical events, such as impacts
of wildfires or severe weather events. Furthermore, power to detect
trends of given magnitudes under a scenario of sampling at intervals
less than annually are potentially different from those that we derived
from annual sampling (Gerrodette, 1987). If less frequent than annual
monitoring is to be considered as a potential scenario, the power analy-
sis used to determine effect size would need to be modified specifically
to reflect the actual sampling frequency relative to projected population
changes.

In our study, we sought to develop a monitoring program based on
our best estimates of statistical power with the expectation that
power would be reassessed on a regular basis. With additional data,
new estimates would be generated and effort would be adjusted as
needed to minimize loss of information from the long-term dataset
that may have resulted from initial estimates of power that were biased
high. For those developing monitoring programs where insufficient in-
formation from a single year is not acceptable, or where power will
not be frequently reassessed, we recommend taking a more conserva-
tive approach. Specifically, we suggest using the bounds of the confi-
dence intervals based on an appropriate alpha, rather than actual
point estimates as we have done. For instance, we suggest using the
lower confidence bound of initial abundance and occupancy estimates
for determining power, and for the estimate of occupancy to select a
sample size that would result in an effective sample size desired for es-
timating abundance.

Our estimates for costs associated with each of the scenarios we
present are strictly for field efforts and do not include costs for initial
purchase andmaintenance of all required equipment.We also excluded
costs for bait and bedding, which we determined to be insignificant rel-
ative to other costs. Finally, we do not include estimates of costs for reg-
ular analyses of data collected as part of the long-term monitoring
program; however, we strongly recommend this effort be considered
and adequately budgeted for. Failure to do so may jeopardize reaching
the long-term objectives, even for properly designed monitoring
programs.

Our study serves as an example of how to develop a rigorous moni-
toring program for rangeland fauna. We presented multiple scenarios
for application to rangelands because there is no optimal metric for de-
tecting change in abundance or occupancy per se; each individual or
group responsible for making management decisions must determine
the level of change that needs to be identified over a given period of
time. It should be clear, however, that developing a long-termmonitor-
ing program with proper estimates of power and sensitivity requires
preliminary data. In the absence of relevant preliminary data, an initial
(3 yr in our case) period of intensive sampling is necessary to generate
estimates of power for proposed sampling methods and sampling in-
tensities. These estimates allow for the development of alternative
monitoring scenarios such that opportunity costs can be evaluated. Al-
though there is no single best solution, our study design, analyses, and
results serve as a reasonable framework that can be used as a starting
point for other such efforts regardless of the species considered for
monitoring or the type of terrestrial vegetation occupied.

While we include specific recommendations for monitoring the
small mammal assemblage on the East Foundation, such as sample
sizes and timing, we discourage using our monitoring scenarios else-
where with the expectation that sensitivity would be the same as we
predict from our study. It should be clear that our estimates were
based on data collected on our study sites. Therefore, our recommenda-
tions are not valid elsewhere without further testing with an appropri-
ate dataset.

Implications

The steps thatwe outlined earlier should provide a general guideline
for land managers or landowners with conservation goals for develop-
ing a long-term monitoring program specific to their objectives (see
Fig. 1). Once target species andmonitoringmetrics are selected, it is crit-
ical to generate estimates of power for specific levels of effort, effect
sizes, duration, and significance. It may be possible to estimate power
from prior data; however, unless these data were collected in the
same location with the same methods proposed for the monitoring,
we strongly suggest initial sampling be implemented to generate
these estimates directly as we did. The estimates of effect size and
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power then become the foundation from which monitoring scenarios
can be developed. Developing multiple scenarios, each with their spe-
cific operating cost, presents the additional benefit of allowing for the
consideration of the various tradeoffs between effort and sensitivity
among competing scenarios.
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