
Western North American Naturalist Western North American Naturalist 

Volume 82 
Number 1 — Issue in Progress Article 4 

3-25-2022 

Monitoring occupancy of bats with acoustic data: power and Monitoring occupancy of bats with acoustic data: power and 

sample size recommendations sample size recommendations 

Jeremy A. Baumgardt 
Texas A&M Natural Resources Institute, College Station, TX 77843; Caesar Kleberg Wildlife Research 
Institute, Texas A&M University–Kingsville, Kingsville, TX 78363, jeremy.baumgardt@tamuk.edu 

Michael L. Morrison 
Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, TX 
77843, mlmorrison@tamu.edu 

Leonard A. Brennan 
Caesar Kleberg Wildlife Research Institute, Texas A&M University–Kingsville, Kingsville, TX 78363, 
leonard.brennan@tamuk.edu 

Helen T. Davis 
Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, TX 
77843, helentricedavis@gmail.com 

Rachel R. Fern 
Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, TX 
77843, RachelRFern@gmail.com 

See next page for additional authors Follow this and additional works at: https://scholarsarchive.byu.edu/wnan 

Recommended Citation Recommended Citation 
Baumgardt, Jeremy A.; Morrison, Michael L.; Brennan, Leonard A.; Davis, Helen T.; Fern, Rachel R.; 
Szewczak, Joseph M.; and Campbell, Tyler A. (2022) "Monitoring occupancy of bats with acoustic data: 
power and sample size recommendations," Western North American Naturalist: Vol. 82: No. 1, Article 4. 
Available at: https://scholarsarchive.byu.edu/wnan/vol82/iss1/4 

This Article is brought to you for free and open access by the Western North American Naturalist Publications at 
BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized 
editor of BYU ScholarsArchive. For more information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/wnan
https://scholarsarchive.byu.edu/wnan/vol82
https://scholarsarchive.byu.edu/wnan/vol82/iss1
https://scholarsarchive.byu.edu/wnan/vol82/iss1/4
https://scholarsarchive.byu.edu/wnan?utm_source=scholarsarchive.byu.edu%2Fwnan%2Fvol82%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/wnan/vol82/iss1/4?utm_source=scholarsarchive.byu.edu%2Fwnan%2Fvol82%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Monitoring occupancy of bats with acoustic data: power and sample size Monitoring occupancy of bats with acoustic data: power and sample size 
recommendations recommendations 

Authors Authors 
Jeremy A. Baumgardt, Michael L. Morrison, Leonard A. Brennan, Helen T. Davis, Rachel R. Fern, Joseph M. 
Szewczak, and Tyler A. Campbell 

This article is available in Western North American Naturalist: https://scholarsarchive.byu.edu/wnan/vol82/iss1/4 

https://scholarsarchive.byu.edu/wnan/vol82/iss1/4


 
*Corresponding author: jeremy.baumgardt@tamuk.edu

36

JAB  orcid.org/0000-0003-2779-6822 MLM  orcid.org/0000-0001-9298-8017 HTD  orcid.org/0000-0001-5449-4331

Western North American Naturalist 82(1), © 2022, pp. 36–49 

Monitoring occupancy of bats with acoustic data:  
power and sample size recommendations 

JEREMY A. BAUMGARDT1,3,*, MICHAEL L. MORRISON2, LEONARD A. BRENNAN3, HELEN T. DAVIS2,  
RACHEL R. FERN2, JOSEPH M. SZEWCZAK4, AND TYLER A. CAMPBELL5 

1Texas A&M Natural Resources Institute, College Station, TX 77843 
2Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, TX 77843 

3Caesar Kleberg Wildlife Research Institute, Texas A&M University–Kingsville, Kingsville, TX 78363 
4Department of Biological Sciences, Humboldt State University, Arcata, CA 95521 

5East Foundation, San Antonio, TX 78216 
 
 

      ABSTRACT.—Bats are difficult to study due to their nocturnal, cryptic, and highly vagile nature. Ongoing 
advances in acoustic recording hardware and call classification software have made species detection and activity 
monitoring more feasible. Our objectives were to determine the effort necessary to monitor bat assemblages using 
an occupancy framework and acoustic data and to provide guidelines for researchers interested in developing simi-
lar monitoring programs. We collected data at 2 study areas in South Texas from June through September in 2015, 
2016, and 2017. We used Pettersson D500X Mk II real-time full-spectrum detectors and classified sound files using 
SonoBat bat call analysis software. We attempted to collect data during 2 visits to individual sites, with up to 5 con-
secutive nights per visit each year. We estimated occupancy rates for each species in each study area using occu-
pancy models in Program MARK and included terms to define trends in detection probability through the season. 
Over the 3 years of our study, we sampled 106 sites with 803 sampling nights and classified a total of 2880 sound 
files to 7 species. Data sets for 6 of the species supported models indicating that detection probability varied 
throughout our sampling period. Our results generally indicate that sample sizes between 10 and 20 sites would be 
required to detect declines in occupancy of 50% over 25 years using 10 nights per site with a starting occupancy 
rate of 0.70. Detecting declines of 30% in 10 years may require >75 sampling sites. Finally, our analysis shows that 
recognizing seasonal variation in detection probability, and then timing surveys accordingly, can greatly reduce sample 
size requirements. 
 
      RESUMEN.—Los murciélagos son difíciles de estudiar debido a su naturaleza nocturna, críptica y altamente vágil. 
Los avances en las herramientas de grabación acústica y el software de clasificación de llamadas han facilitado la detec-
ción de especies y el monitoreo de actividad. Nuestros objetivos fueron (1) determinar el esfuerzo necesario para moni-
torear los ensamblajes de murciélagos, utilizando un sistema de ocupación y datos acústicos, y (2) proporcionar pautas 
para los investigadores interesados en desarrollar programas de monitoreo similares. Recopilamos datos en dos áreas de 
estudio en el sur de Texas desde junio hasta septiembre en 2015, 2016 y 2017. Usamos los detectores de espectro com-
pleto en tiempo real Pettersson D500X Mk II y archivos de sonido clasificados usando el software de análisis de lla-
madas de murciélagos SonoBat. Intentamos recopilar datos durante dos visitas a diferentes sitios de hasta cinco noches 
consecutivas por visita cada año. Calculamos las tasas de ocupación de cada especie en cada área de estudio utilizando 
modelos de ocupación del Programa MARK e incluimos términos para definir las tendencias en la probabilidad de 
detección a lo largo de la temporada. Durante los tres años de nuestro estudio, tomamos muestras durante 803 noches 
de 106 sitios y clasificamos un total de 2880 archivos de sonido perteneciente a siete especies. La base de datos de seis 
de las especies respaldó modelos que indican que la probabilidad de detección varió a lo largo de nuestro período de 
recolección de muestras. Nuestros resultados mayormente indican que se necesitarían muestras de entre 10 y 20 sitios 
para detectar disminuciones en la ocupación del 50% durante 25 años durante 10 noches por sitio con una tasa de ocu-
pación inicial de 0.70. Mientras que, para detectar disminuciones del 30% en 10 años se podrían requerir más de 75 
sitios de muestreo. Por último, nuestro análisis indica que el tener en cuenta que la probabilidad de detección varía 
según la estación y al sincronizar el muestreo de manera acorde puede reducir en gran medida los requisitos de tamaño 
de la muestra. 
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    Bats represent about one-fifth of the 
world’s mammalian species, with both diver-
sity and abundance highest in lower latitudes 
(Wilson and Reeder 2003). Collectively, this 
diverse taxon provides a number of critical 
ecosystem services such as insect predation, 
seed dispersal, and plant pollination (Patter-
son et al. 2005, Kunz et al. 2011). Additionally, 
Kalka et al. (2008) concluded that bat preda-
tion on herbivorous insects reduces herbivory 
in the tropics more than bird insectivory 
does, and they suggested that the same rela-
tionship likely holds in temperate zones as 
well. These services have potentially large 
impacts on agriculture and forest and range 
management. 
    Of the over 1200 recognized species of 
bats worldwide, 18% are listed as Threatened 
by the International Union for Conservation 
of Nature (IUCN), with an additional 15% 
having insufficient data to determine their 
conservation status (Frick et al. 2020). In 
North America, the recent introduction of the 
fungus that causes the disease White Nose 
Syndrome has devastated many bat species in 
the northeastern United States and is pre-
dicted to result in regional extinctions of nu -
merous species’ populations (Frick et al. 2010, 
2015, Turner et al. 2011). Additionally, bat 
populations are impacted by climate change, 
development for wind power, and certain crop 
and rangeland management practices (Kunz 
and Pierson 1994, Jones et al. 2009, Frick et 
al. 2020). Furthermore, removal or control of 
trees to improve grazing for livestock may 
limit roosting resources or degrade landscape 
structure such as edge habitat and cover 
needed as foraging habitat for some species 
of bats, thereby reducing or limiting their 
populations in these areas (Humphrey 1975, 
Racey and Entwistle 2003, Jones et al. 2009). 
On the other hand, artificial water sources 
intended for livestock provide foraging sites 
and water for bats in areas where these re -
sources are otherwise uncommon (Fulbright 
et al. 1990, Fern et al. 2018). 
    As our understanding of recent and poten-
tial future changes in regional bat populations 
grows, the general interest in, and perhaps 
the necessity of, monitoring these populations 
will also increase. Historically, bats have been 
difficult to study, primarily because of their 
nocturnal, cryptic, and highly vagile nature 
(O’Shea et al. 2003). Ongoing improvements 

in acoustic recording hardware and call classi-
fication software have made species detection 
and activity monitoring more feasible (Parsons 
and Szewczak 2009, Frick 2013). Furthermore, 
occupancy studies based on acoustic data can 
provide information necessary for detecting 
changes in population metrics such as regional 
occurrence and activity (Weller 2008, Rod-
house et al. 2012). Our primary objectives 
were to determine optimal methods and the 
necessary level of effort to monitor the bat 
assemblage on the East Foundation ranches in 
southern Texas using an occupancy framework 
and acoustic data, with the secondary objec-
tive of providing broadly applicable guidelines 
for determining required effort and sample 
sizes for others interested in developing simi-
lar bat monitoring programs. 
 

STUDY AREA 

    We collected data on the 60,752-ha San 
Antonio Viejo (Jim Hogg and Starr counties; 
hereafter SAV) and 10,984-ha El Sauz (Willacy 
and Kenedy counties; hereafter ELS) ranches 
in southern Texas. These ranches are owned 
by the East Foundation and managed as a 
working laboratory to support wildlife conser-
vation, private land stewardship, and other 
public benefits associated with ecologically 
sound cattle ranching. One-hundred-year an -
nual precipitation averages for the period 
ending in 2015 ranged from ~54 cm at SAV 
to ~63 cm at ELS (PRISM Climate Group 
2018). Annual rainfall totals for 2015, 2016, 
and 2017 were 66, 60, and 46 cm, respectively, 
at SAV and 96, 55, and 56 cm, respectively, at 
ELS (PRISM Climate Group 2018). 
    The SAV is a matrix of woodland (73%), 
shrubland (18%), and grassland (5%), with 
approximately half of the ranch in the Coastal 
Sand Plain Ecoregion and half in Texas-
Tamaulipan Thornscrub (Diamond and Ful-
bright 1990, Fulbright et al. 1990). The ELS is 
located 117 km to the east of SAV and adja-
cent to the Laguna Madre along the Texas 
Gulf Coast. El Sauz is made up of 30% wet-
land vegetation, with the remainder of the 
ranch a matrix of woodland (36%), grassland, 
(27%), and shrubland (5%). Sixty percent of 
ELS is in the Coastal Sand Plain ecoregion, 
with the remaining 40% split evenly between 
the Laguna Madre Barrier Islands and Coastal 
Marshes ecoregion and the Lower Rio Grande 
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Valley ecoregion (Diamond and Fulbright 1990, 
Fulbright et al. 1990, Forman et al. 2009). 
 

METHODS 

    We randomly located 2 sampling sites in 
each of 10 pastures associated with a long-
term grazing study being conducted in the 
Coloraditas Grazing Research and Demon-
stration Area (hereafter CGRDA) on the north -
ern 7300 ha of SAV (Fig. 1). We randomly 
located all other sampling sites on the re -
maining southern portions of SAV (SAVs) and 
on ELS. We spaced all sampling locations a 
minimum of 400 m from ranch or pasture 
boundaries and a minimum of 1 km from 
other sampling locations and assumed that 
this spacing regime resulted in independent 
samples representative of the pastures of 
interest. We were primarily interested in moni-
toring summer resident bats; thus, we sam-
pled from about June through September in 

2015, 2016, and 2017. The number of sites 
we sampled in a year was determined by the 
number of detection units we had available 
(5 in 2015, 4 in 2016, and 6 in 2017). We 
attempted to survey each site for a minimum 
of 5 consecutive successful nights before 
moving the detectors (Gorresen et al. 2008, 
Skalak et al. 2012). A successful night was 
defined as a night without rain or high winds 
and when equipment did not fail. Once all 
sites were visited, we attempted a second 
visit to each site for 5 additional successful 
nights, as time and equipment allowed. Our 
primary goal was to determine the number of 
sites and visits needed to monitor the occur-
rence of most of the bat species through 
time. Our sampling intensity per site was 
likely adequate to sample local species rich-
ness; however, we recognize that more in -
tensive sampling per site might be needed 
to identify very rare species (Moreno and 
Halffter 2000, Skalak et al. 2012, Froidevaux 
et al. 2014, Green et al. 2020). 
    We recorded ultrasonic bat calls using 
Pettersson D500X Mk II real-time full-spec-
trum detectors (Pettersson Elektronik, Upp-
sala, Sweden). We used external microphones 
connected by 7.62-m-long (25-ft-long) micro-
phone cables and extended to approximately 
0.5 m above the canopy of the surrounding 
vegetation using a telescoping extension pole. 
Wind noise can trigger the detector to record 
and interfere with the recording of actual bat 
calls. We directed the microphones approxi-
mately 30° above horizontal and in a north-
westerly direction to avoid prevailing winds 
from the southeast. Additionally, we used the 
cone-shaped horn that came with the micro-
phones for additional protection from wind 
and rain and increased directionality and sen-
sitivity. We ran detectors from 15 min before 
sunset to 15 min after sunrise using a rela -
tive timer built into the detector. The relative 
timer function estimated daily times of sun-
rise and sunset based on geographic location. 
We adjusted detector input volume (gain) and 
the requirements for the duration of a bat call 
to trigger a recording (trigger sensitivity) on 
a case-by-case basis because wind and other 
environmental factors could trigger unwanted 
recordings and deplete detector battery life. 
We predominantly used a “low” trigger sensi-
tivity setting because lower settings generally 
discriminate against non-bat recordings. We 
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    Fig. 1. Sites on East Foundation lands where we recorded 
bat passes in 2015 (+), 2016 (×), and 2017 (○), including 
San Antonio Viejo (SAV), the Coloraditas Grazing Research 
and Demonstration Area pastures (CGRDA) on SAV, and 
El Sauz (ELS) in southern Texas, USA. Combined symbols 
represent sites that were surveyed in multiple years.



set the intensity at which a sound would be 
recorded (trigger level) to 80 dB because a 
typical bat calls at ~110 dB (Surlykke and 
Kalko 2008), and we wanted to detect bats 
that might call more quietly or indirectly to 
our microphones. We also programmed de -
tectors to pause for 5 s between recordings to 
discourage the recording of multiple sound 
files during a single bat pass. Lastly, we used 
a sampling frequency of 500 kHz and turned 
off the low-frequency attenuation setting to 
sample the spectrum of frequency ranges uti-
lized by potential bat species on the ranches. 
    To organize bat recordings prior to pro-
cessing, we attributed sound files with meta-
data that included site, detector, date, and 
time stamp. We then filtered attributed sound 
files using the SonoBat 4.2 high-grade batch 
scrubber. We set the batch scrubber to a 
“medium” sensitivity to reject poor-quality 
calls; however, we included calls from 5 to 
10 kHz to include potential bat species that 
vocalize at lower frequencies (e.g., Rafinesque’s 
big-eared bat [Corynorhinus rafinesquii]). 
This ensured that the clearest bat calls were 
isolated for species identification and also 
reduced the number of “noise” files, which 
generally included insect, wind, or other am -
bient sound. We processed the filtered sound 
files, using the most up-to-date SonoBat re -
gional classifier, as follows. In 2015, we classi-
fied bat recordings to species using SonoBat 
3.0 and a minimum 94% confidence (provided 
by the classifier) for automated identification. 
As upgraded software became available in 
2016 and 2017, we used SonoBat 4.0 and then 
SonoBat 4.2 classifiers, respectively. The Sono-
Bat classifiers did not automatically assign a 
species to recordings that contained more 
than one bat call or those that fell below a 
94% probability of identification confidence. 
Instead, we manually vetted these recordings 
to assign a species classification by compar -
ing a sonogram of the re cording in question 
with those of candidate species suggested by 
the software using a reference library of 
known species. We then summarized classi-
fied recordings by site, sampling night, and 
species. 
    We estimated ranch-specific occupancy 
rates for individual species by using the sim-
ple occupancy model in Program MARK (White 
and Burnham 1999). We defined occupancy as 
the proportion of sample sites occupied by a 

particular species. We used data collected dur-
ing repeat visits to the same locations to gen-
erate estimates of the probability of detection 
(p), which we then used to correct the record 
of detections to produce unbiased estimates 
of occupancy (MacKenzie et al. 2006). This 
model accounted for missing data such that 
missing nights resulting from equipment fail-
ure did not bias our estimates. We limited our 
analysis to 5 successful nights from each sam-
pling visit if more than 5 nights were col-
lected, resulting in detection histories of 10 
occasions. We assumed the detection proba-
bility may have changed as a function of time 
through the season; thus, we included models 
in our candidate set with a linear term for 
ordinal date to allow for a linear change in p 
through the season, and a quadratic term for 
ordinal date to allow for curvilinear changes 
through the season. We included group covari-
ates in all models to produce separate esti-
mates of occupancy for the CGRDA, the rest 
of SAV (SAVs), and ELS. We compared all 3 
models using Akaike’s information criterion 
adjusted for small sample sizes (AICc; Burn-
ham and Anderson 2002, Arnold 2010) and 
used the model with the most support for 
each species’ data set to generate parameter 
estimates. We analyzed the data from 2015 
and 2017 a second time to generate species-
specific estimates of occupancy for the entire 
SAV in order to get estimates and standard 
error values from a larger sample size. 
    We identified 2 levels of sensitivity to 
assess power and determine sample sizes. 
The first level was to detect a 30% decline in 
occupancy rate over 10 years and was based 
on the criteria for designating a species as 
Vulnerable by the International Union for 
Conservation of Nature (IUCN 2012). We se -
lected a second level that was less sensitive 
than the first and defined it as the ability  
to detect a 50% decline in occupancy over 
25 years. We estimated the power to detect 
trends based on our 2 sensitivity targets 
(Baumgardt et al. 2019) using the ‘emon’ pack-
age (Version 1.3.2; Barry and Maxwell 2017) 
in R (Version 3.3.2; R Core Team 2017). We 
began by generating linear trends for each 
of the sensitivity targets, with the occupancy 
estimate from the top supported model as the 
starting point with a normal distribution and 
the estimated SE as the standard deviation. 
We then fitted a linear regression line to the 
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projected occupancy estimates to test for evi-
dence of a trend (a = 0.05). We repeated 
these steps for a total of 10,000 simulations 
and calculated power as the proportion of the 
simulations for which a trend was detected 
with P < a. We repeated these steps using 
estimates from each species in each year for 
each study area. 
    To further partition the impacts of occu-
pancy estimates and sample size on power, we 
used the glm function in R to run a multiple 
logistic regression model using the results 
from each of the power analyses. The esti-
mated occupancy rate and the number of sites 
sampled for the estimate were the indepen-
dent variables, and the estimated power to 
detect a 50% decline in 25 years was the 
dependent variable. We ran a second regres-
sion model with the estimated power to detect 
a 30% decline in 10 years as the dependent 
variable. For each of the regression models, 
we then used the predict function in R to pro-
ject the resulting power for various occupancy 
rates and number of sites surveyed. 
    Finally, we ran additional simulations 
through our power analysis with a range of 
occupancy and SE estimates to calculate the 
coefficient of variation (CV) that was required 
to reach each of our 2 sensitivity targets with 
a power of 0.90. We then calculated the num-
ber of survey sites that would be required to 
reach occupancy estimates with these CV val-
ues based on our date-specific estimates of 
detection probabilities for our mean survey 
days, 10 occasions, and a range of occupancy 
estimates, using equation 6.3 from MacKenzie 
et al. (2006): 

     Ψ (1 − p*) 
s = ______ [(1 − Ψ) + _________________] , 

     Var(Ψ̂ )                       p* − Kp(1 − p)k − 1
 

 
where s is the number of samples, Ψ is the 
occupancy rate, p* is the probability that the 
species was detected at least once throughout 
the 10-occasion sampling duration, p is the 
estimated detection probability for a single 
occasion, and K is the number of occasions (K 
= 10). For species that had a time-varying p, 
we used the average of the estimates for the 
specific time frame. We repeated these steps 
using the 10 survey days that corresponded 
with our estimated maximum detection proba-
bility during our sampling time frame (pmax) 
to explore the effects of sample timing on 
required sample size. 
 

RESULTS 

    In 2015, we sampled 28 sites on SAV: 20 in 
the CGRDA pastures and 8 across the remain-
ing southern portion of SAV (SAVs). Addition-
ally, we sampled at 5 locations on ELS. We 
sampled the same 20 locations in the CGRDA 
again in 2016 and 2017. In 2016, we increased 
the number of points sampled on ELS to 10 
but did not sample any locations on SAVs. In 
2017, we sampled 23 locations on SAVs, but 
did not sample any locations on ELS (Table 1). 
We experienced multiple problems with the 
detectors, memory cards, and weather that 
resulted in success rates of 80% in 2015, 85% 
in 2016, and 86% in 2017 for detector nights 
attempted. Between these success rates and 
the limitations due to available equipment, we 
averaged 7.57 (SD = 2.63) successful nights 

40 WESTERN NORTH AMERICAN NATURALIST (2022), VOL. 82 NO. 1, PAGES 36–49

    TABLE 1. Number of sound files of bat calls recorded by species in each year in each study area. Data were collected 
in the Coloraditas Grazing Research and Demonstration Area (CGRDA) on the northern portion of San Antonio Viejo, 
the southern portion of the San Antonio Viejo (SAVs), and El Sauz (ELS), southern Texas, USA, in 2015, 2016, and 2017.  
                                                                                                                         Number of passes detected                                                                                       ________________________________________________________ 
                                                                                                      2015                                  2016                             2017                                                                                       ____________________         _____________         ______________ 
Species                             Common name                    CGRDA    SAVs     ELS         CGRDA    ELS          CGRDA   SAVs  
Lasiurus borealis             Eastern red bat                          50          51        565                 29         328                 45         170 
Lasiurus cinereus            Hoary bat                                 102            5            5                   1             0                   6             4 
Lasiurus intermedius       Northern yellow bat                  15            2            1                   7             8                   0             0 
Myotis velifer                   Cave myotis                              148          14            0                 71             2               349         116 
Nycticeius humeralis       Evening bat                                  5            0          76                 24         114                 85         176 
Perimyotis subflavus        Tricolored bat                               0            0            6                   3           38                   5             2 
Tadarida brasiliensis       Mexican free-tailed bat                1            0            0                 12             5               102         132 
Sites sampled                                                                      20            8            5                 20           10                 20           23 
Successful nights                                                               119          40          24               151           50               194         225  



per site each year, resulting in a total of 183 
successful nights of sampling in 2015, 201 in 
2016, and 419 in 2017 (Table 1). We classified 
a total of 1046, 642, and 1192 sound files in 
2015, 2016, and 2017, respectively, to 7 spe -
cies (Table 1). 
    The models with the most support for 
describing occupancy for hoary bat (Lasiurus 
cinereus) and northern yellow bat (Lasiurus 
intermedius) contained a term for ordinal 

date in the detection probability, suggesting 
that p increased linearly through our sam -
pling season (Fig. 2, Appendix 1). However, 
note that models were fit on the logistic 
scale and that back-transforming estimates 
resulted in a slightly nonlinear curve. The 
best-supported models for describing occu-
pancy for eastern red bat (Lasiurus borealis), 
cave myotis (Myotis velifer), evening bat (Nyc-
ticeius humeralis), and Mexican free-tailed bat 
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    Fig. 2. Detection probability estimates through the sampling season for the 7 species of bats we detected on San 
Antonio Viejo and El Sauz in southern Texas, USA, during 2015, 2016, and 2017. A, Eastern red bat (Lasiurus bore-
alis). B, Hoary bat (Lasiurus cinereus). C, Northern yellow bat (Lasiurus intermedius). D, Cave myotis (Myotis velifer). 
E, Evening bat (Nycticeius humeralis). F, Tricolored bat (Perimyotis subflavus). G, Mexican free-tailed bat (Tadarida 
brasiliensis). Dashed lines represent 95% confidence bands. We sampled from ordinal date 151 (31 May) to ordinal 
date 272 (29 September).
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(Tadarida brasiliensis) all contained a qua-
dratic term for ordinal date in the detection 
probability, suggesting that p changed non-
linearly through the time frame of our sam-
pling (Fig. 2, Appendix 1). Our data showed 
limited support for models with any variation 
in p for describing occupancy of tricolored 
bat (Perimyotis subflavus); thus, we assumed 
the model with a constant p was the most 
appropriate (Fig. 2, Appendix 1). The result-
ing occupancy rate estimates from this analy-
sis varied widely among species, sites, and 
years, including estimates ranging from 0 to 
1.0 (Table 2). 
    Of the 52 data sets used to calculate the 
power to detect a simulated decline in occu-
pancy, we estimated that 21 (40.4%) of these 
would result in a power of 0.90 to detect a 
50% decline in 25 years and 6 (11.5%) would 
result in a power of 0.90 to detect a 30% 
decline in 10 years (Table 3). We estimated 
the average power to detect a 50% decline 
over 25 years with the 9 data sets we analyzed 
for eastern red bat to be 0.95. The same 9 
data sets for cave myotis resulted in an aver-
age power of 0.81 to detect this change. We 
had 7 estimates of occupancy for evening bat; 

the average estimated power to detect this 
change for this species was 0.74. Our power 
estimate for the remaining species was less 
than 0.60 to detect this change. Average 
power to detect a 30% decline in 10 years 
with our data sets was less than 0.50 for all 
species (Table 3). 
    The coefficients from our logistic regres-
sion models predicting power based on occu-
pancy rate and number of sites sampled indi-
cated that both occupancy rate and number 
of sites sampled were positively correlated 
with power for both sensitivities (Table 4). 
Predictions from these models projected out 
to 100 sites sampled for detecting a 50% 
decline in occupancy over 25 years suggest 
that a power of 0.90 would be reached with 
approximately 20 sites for populations with a 
starting occupancy rate of 0.90, but this same 
power would require over 70 sites for popula-
tions with a starting occupancy rate of 0.10 
(Fig. 3). Our predictions for detecting a 30% 
decline in occupancy over 10 years projected 
out to 150 sites sampled suggest that approxi-
mately 55 sites would be required to reach a 
power of 0.90 for populations with starting 
occupancy of 0.90, and as many as 125 sites 
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    Fig. 3. Sample size calculations from our logistic regres-
sion model for the power to detect a 50% decline in occu-
pancy over 25 years projected out to 100 survey sites for 
monitoring occupancy of bats in our study areas in south-
ern Texas, USA, from data collected in 2015–2017. Indi-
vidual curves represent various starting occupancy rates, 
and the horizontal lines represent the benchmark power 
values of 0.80 (gray) and 0.90 (black).

    Fig. 4. Sample size calculations from our logistic regres-
sion model for the power to detect a 30% decline in occu-
pancy over 10 years projected out to 150 survey sites for 
monitoring occupancy of bats in our study areas in south-
ern Texas, USA, from data collected in 2015–2017. Indi-
vidual curves represent various starting occupancy rates, 
and the horizontal lines represent the benchmark power 
values of 0.80 (gray) and 0.90 (black).



may be necessary to reach the same power 
with a starting occupancy of 0.10 (Fig. 4). 
    Our second simulation exercise revealed 
that a CV for occupancy estimates of ≤0.21 
was required to detect a 50% decline in 25 
years with a power of 0.90, and a CV of 
≤0.07 was required to detect a 30% decline 
in 10 years. These estimates were constant 
for the range of occupancy estimates we 
included in our simulation from 0.10 to 0.90. 
The mean survey dates of the 10 occasions 
from each sampled site over our 3 years of 
sampling fell on ordinal dates 194–198, 245, 
and 247–250. Our estimation of required 
sample size based on equation 6.3 from Mac -
Kenzie et al. (2006) and our date-specific 
detection probability estimates showed that 
populations with smaller occupancy rates 
require much larger sample sizes to monitor 
with the same level of sensitivity and power 
than populations with higher occupancy rates 
(Table 5). Timing also had the potential to 
greatly impact required samples sizes, particu-
larly for species with greater variation in 
detection probability through our sampling 
time frame. This was most clearly supported 
by species with peaks in detection probabil-
ity that did not coincide with our sampling 
effort (e.g., hoary bat and northern yellow 
bat; Fig. 2B, C, Table 5). 
 

DISCUSSION 

    Despite the challenges typically associated 
with surveying bat populations (e.g., noctur-
nal, cryptic, and highly vagile; O’Shea et al. 
2003), the use of automated acoustic detec-
tion and recording equipment and a site occu-
pancy framework provide a robust method for 
long-term monitoring (Weller 2008, Rodhouse 
et al. 2012). Furthermore, we showed that it is 

possible to reach meaningful power and sen-
sitivity levels for detecting changes in occu-
pancy rates in our study with reasonable sam-
ple sizes for 6 of the 7 species we detected, 
and likely for all 7 if the timing of surveys is 
adjusted to match periods of higher estimated 
detection probabilities. 
    The results from our analyses generally 
indicated that sample sizes between 50 and 
70 sites per study area would be sufficient to 
reach a power of 0.90 to detect declines in 
occupancy of 50% over 25 years for most 
species in our study using 10 nights per site 
if starting occupancy rates were as low as 
0.30. Estimates of required sample sizes to 
reach the same sensitivity levels were sub-
stantially smaller (~10–20) for populations 
with starting occupancy rates around 0.70 
(Table 5). Our sample size recommendations 
from the regression modeling (Figs. 3, 4) are 
slightly more conservative and more appro-
priate to use as guidelines for other study 
areas, because these were calculated for un -
specified, but typical detection probabilities 
that we experienced in our study. 
    Our results suggest that p varied through 
the season (June–September) for 6 of the 7 
species in our study. Similar occupancy stud-
ies have found no support for time-varying p, 
or support for time-varying p for only a lim-
ited number of species considered in their 
studies; however, most of these studies limited 
their consideration to models describing a lin-
ear time trend (Hein et al. 2009, Rodhouse et 
al. 2012, Bender et al. 2015, Starbuck et al. 
2015, but see Yates and Muzika 2006, Pauli et 
al. 2017). Changes in p over the sampling sea-
son may be due to a number of factors, singu-
larly or jointly, including changes in prey 
availability (Black 1974), juveniles becoming 
volant (Yates and Muzika 2006), and changing 
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    TABLE 4. Results of logistic regression for (a) power to detect a 50% decline over 25 years and (b) power to detect a 
30% decline over 10 years in proportion of sites occupied by individual species of bats from data collected in southern 
Texas, USA, 2015–2017.  
Variable                                                                Regression coefficient (–+SE)                      z                                        P  
(a) Detecting a 50% decline in 25 years 
    Intercept                                                                       −3.24 –+ 1.24                               −2.6                                    0.009 
    Occupancy rate                                                               4.55 –+ 1.33                                  3.43                               <0.001 
    Number of sites sampled                                                0.07 –+ 0.04                                  1.71                                  0.087 
(b) Detecting a 30% decline in 10 years 
    Intercept                                                                       −4.93 –+ 1.50                               −3.30                               <0.001 
    Occupancy rate                                                               4.75 –+ 1.55                                  3.06                                  0.002 
    Number of sites sampled                                                0.05 –+ 0.03                                  1.62                                  0.105  
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energy requirements (Barclay 1989). These 
changes may be adequately described linearly 
when the time frame is narrow; however, we 
suggest that nonlinear models are more ap -
propriate, particularly when multiple factors 
may be involved and over time periods lasting 
more than a few weeks. Indeed, our data 
supported a quadratic term for describing 
changes in p over the season for 4 of the 7 
species we detected. If high levels of variation 
exist in p among surveys, modeling this varia-
tion may decrease potential bias in oc cupancy 
estimates (MacKenzie et al. 2006). Addition-
ally, by modeling time with a quadratic term, 
we could identify specific dates that predicted 
when p would be highest during our samp -
ling. MacKenzie et al. (2006) recommended 
using sampling techniques that maximize p to 
attain greater power or reach the same power 
with less effort. Similarly, timing a study to 
maximize p should also improve power or 
reduce required effort, as evidenced by our 
results. This was most apparent for the hoary 
bat in our study since our observed p was sub-
stantially lower than our predicted pmax later 
in the season (Table 5, Fig. 2B). 
    Our results suggest that for eastern red 
bat, optimal timing for sampling to maximize 
detection probability occurred from ordinal 
dates 200 to 240 (20 July–28 August). For 
species such as cave myotis, evening bat, and 
Mexican free-tailed bat, optimal timing for 
sampling occurred from ordinal dates 220 to 
260 (8 August–17 September). Furthermore, 
our predicted efficiency of the sampling time 
for hoary and northern yellow bats increased 
through our entire sampling season and may 
have peaked beyond day 270 (late September). 
Our estimated p for 4 of the 7 species in our 
study was <0.2 after the first month of sam-
pling, yet all but 2 of the 7 species reached an 
estimated maximum p later in the season of 
0.39 or greater. According to equation 6.3 from 
MacKenzie et al. (2006), increasing p* (proba-
bility of detecting the species at least once 
over all occasions) decreases the sample size 
required to reach identified targets; however, 
little improvement was observed for increases 
in p* beyond 0.95. MacKenzie and Royle 
(2005) suggested that a survey strategy that 
results in a p* between 0.85 and 0.95 is opti-
mal. With 10 successful occasions, an average 
of p = 0.26 is required to reach p* = 0.95. 
Our data predicted this was attainable for 5 

of the 7 species by initiating sampling after 
1 July. Such an initiation date delay would also 
improve p* for hoary bat, but not to the 0.95 
level. Our estimate of p* for the mean sam-
pling dates for hoary bat was 0.70; pushing 
sampling initiation to the end of September 
would result in p* = 0.93. Our estimate of p* 
for tricolored bat was constant through the 
season at 0.91. While delaying sampling would 
improve the power of a monitoring program 
for most species in our study areas, such 
actions would limit the number of sites that 
could be visited in a single season with a fixed 
number of detection units. Furthermore, short-
ening the sampling duration of a monitoring 
program may limit its ability to detect tempo-
ral patterns in p that may be useful (e.g., for 
detecting shifts in phenology). If it is not 
desired or feasible to reach a specific level of 
p* for a given species by sampling during the 
peak period of p or if p is consistently low 
throughout the sampling season, it may be 
necessary to increase the duration of sampling 
to >10 nights per site. 
    While we set 10 nights per site per year 
as our goal for the present study, our hard -
ware limitations and our nightly success rate 
between 80% and 86% resulted in our average 
of 7.57 nights of sampling. Had we reached 10 
successful nights per site, our resulting occu-
pancy estimates would likely have been more 
precise. Thus, we feel our power estimates are 
conservative for a monitoring program that 
achieves 10 successful nights of sampling per 
site. While our success rates did improve with 
experience both within and among years, 
many of the issues we encountered were un -
avoidable. Hardware for acoustic monitoring 
of bats has improved greatly in the past 
decade and will likely continue to become 
more reliable in the future. However, to those 
developing monitoring programs with similar 
equipment, we suggest that they construct 
plans that allow for success rates similar to 
ours while still reaching desired sample sizes. 
    We selected the timing of sampling to focus 
on summer residents and to avoid migratory 
bats. Should monitoring of migratory bats be 
of interest, timing would need to be modified. 
Similarly, our analysis focused on maximizing 
efficiency for monitoring all species detected 
in our study areas. Should monitoring focus on 
singular or select species among those pres -
ent, efficacy may be improved by adjusting 
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the timing of sampling to coincide with the 
greatest detection probability of those species. 
    The relationship between our estimates of 
required sample size and starting occupancy 
rates is partially due to our use of percent 
change to define the sensitivity levels. For 
instance, a 50% decline in occupancy from a 
starting occupancy of 0.70 represents an 
absolute change of 0.35, while a 50% decline 
from a 0.30 occupancy rate represents an 
absolute change of 0.15. Our high sample 
size recommendations for low occupancy 
rates should not deter researchers from initi-
ating a long-term monitoring program. We 
suggest that sample sizes be selected based 
on realistic expectations of the sensitivity of a 
monitoring program balanced with meaning-
ful changes in occupancy rates. We further 
suggest that long-term monitoring programs 
include additional conditional protocols, such 
as increasing sampling intensity when occu-
pancy rates of populations of interest fall 
below some threshold. Failure to enact these 
additional protocols would likely result in 
depleted confidence in estimated occupancy 
and insufficient power at a point when the 
information is most critical. 
    We acknowledge that our use of different 
versions of classification software among the 
3 years of our study represents changes to our 
methods. Without calibrating these changes, 
it would be imprudent to infer changes in 
occupancy rates from our data. However, we 
do not believe these changes affected our 
results or conclusions regarding sample sizes 
and power from the present study because we 
were not testing for occupancy changes; we 
simply used our resulting occupancy esti-
mates as starting points for simulated declines 
in our power analyses. We strongly encourage 
researchers and managers to use new tech-
nologies and software that improve bat detec-
tion and call classification in their long-term 
monitoring programs. However, it is critical 
to calibrate changes to methods (such as our 
use of different software versions) to account 
for potential bias that may otherwise be inter-
preted as population changes. Finally, auto-
mated classification should be considered an 
assistive technology to direct the user to files 
for manual confirmation. When used prop-
erly, manual oversight of the automated clas-
sification should minimize any effect from dif-
ferences in software versions. 

MANAGEMENT IMPLICATIONS 

    For monitoring bat population occupancy 
rates, we recommend incorporating nonlinear 
terms for time-varying p in occupancy models 
with sampling periods lasting more than a 
few weeks. If the temporal pattern in p is bet-
ter described with a linear relationship, or if 
data are insufficient to support a more com-
plex model, these nonlinear models will not 
be well supported by the data and will not be 
selected by typical information theoretic ap -
proaches. However, as we point out above, 
considering potentially complex time effects 
should allow researchers the opportunity to 
improve power or reduce the required sample 
size by adjusting the timing of their sampling 
to coincide with higher rates of p. Addition-
ally, modeling temporal changes in p each 
year should also provide the means for detect-
ing shifts in phenology, such as timing of 
migration and reproduction, which are likely 
to result from climate change (Jones et al. 
2009, Stepanian and Wainwright 2018). 
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    APPENDIX 1. Highest supported occupancy model based on AICc score, relative model weight (Wi), and resulting esti-
mated detection probability (p) and associated standard error (SE) for our median sampling date of 30 July (ordinal date 
211) for the 7 species of bats detected in southern Texas, USA, in 2015, 2016, and 2017. We fit 3 models to each species’ 
data set: model p(t2) included a quadratic term for ordinal date in p; model p(t) included a linear term for ordinal date in 
the detection probability; and model p(.) included no covariates for p. All 3 models included a group covariate for occu-
pancy based on our study areas.  
Species                                         Common name                      Selected model           Wi                       p                       SE  
Lasiurus borealis                         Eastern red bat                                 p(t2)                 1.00                    0.47                  0.035 
Lasiurus cinereus                         Hoary bat                                          p(t)                   0.68                    0.08                  0.027 
Lasiurus intermedius                   Northern yellow bat                         p(t)                   0.79                    0.07                  0.034 
Myotis velifer                               Cave myotis                                      p(t2)                 1.00                    0.45                  0.035 
Nycticeius humeralis                   Evening bat                                      p(t2)                 0.90                    0.34                  0.034 
Perimyotis subflavus                    Tricolored bat                                   p(.)                   0.30a                  0.21                  0.044 
Tadarida brasiliensis                   Mexican free-tailed bat                    p(t2)                 0.85                    0.30                  0.037  
aModel p(t2) for tricolored bat had a Wi of 0.59; however this model included 2 more parameters than model p(.) and an AICc score that was lower by only 
1.34 units.
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