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Simple Summary: Wild pigs are the most abundant wild exotic ungulate in the United States. In 
Texas, particularly, they are abundant and represent a threat to ecosystems, agriculture and hu-
mans. Our objective was to apply a landscape-scale analysis of population genetic structure of wild 
pigs to aid in their management in southern Texas. We used microsatellites to assist large-scale ap-
plied management. We found that some populations were isolated from one another. However, 
many individuals and local populations were admixed, which indicates that multiple introductions 
and artificial movement of individuals has occurred. Wild pig management efficiency and effective-
ness may be able to improve if illegal translocations stop (e.g., enforcing laws) and if management 
cooperatives are created to manage spatially extensive areas of southern Texas. 

Abstract: Wild pigs (Sus scrofa) alter ecosystems, affect the economy, and carry diseases that can be 
transmitted to livestock, humans, and wildlife. Understanding wild pig movements and population 
structure data, including natural population boundaries and dispersal, may potentially increase the 
efficiency and effectiveness of management actions. We trapped, conducted aerial shootings, and 
hunted wild pigs from 2005 to 2009 in southern Texas. We used microsatellites to assist large-scale 
applied management. We quantify broad-scale population structure among 24 sites across southern 
Texas by computing an overall FST value, and a Bayesian clustering algorithm both with and without 
considering the spatial location of samples. At a broad geographic scale, pig populations displayed 
a moderate degree of genetic structure (FST = 0.11). The best partition for number of populations, 
based on 2nd order rate of change of the likelihood distribution, was K = 10 genetic clusters. The 
spatially explicit Bayesian clustering algorithm produced similar results, with minor differences in 
designation of admixed sites. We found evidence of past (and possibly ongoing) translocations; 
many populations were admixed. Our original goal was to identify landscape features, such as bar-
riers or dispersal corridors, that could be used to aid management. Unfortunately, the extensive 
admixture among clusters made this impossible. This research shows that large-scale management 
of wild pigs may be necessary to achieve control and ameliorate damages. Reduction or cessation 
of translocations is necessary to prevent human-mediated dispersion of wild pigs.  
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1. Introduction 
Large-scale management of wildlife populations has increased in recent decades in 

response to invasive species, animal disease, and similar challenges, all of which threaten 
entire ecosystems and humans. For instance, invasive species may affect ecosystem func-
tion by changing the flow of energy and biomass, disrupting disturbance regimes, and 
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changing the physical structure of ecosystems [1–3]. Invasive species can affect the avail-
ability of nutrients for other species and compete with other species in both space and 
time. In addition to ecological effects, invasive species may pose a disease risk. Diseases 
that cross the wildlife, human, and livestock interface have health, economic, and social 
ramifications over entire geographic regions, as evidenced by highly publicized recent 
outbreaks of influenza, rabies, bovine tuberculosis, and foot and mouth disease. Wildlife 
management challenges are expected to increase in coming years through global climatic 
changes, land-cover and land-use changes resulting from anthropogenic activities, and 
natural and unnatural movements of pathogens [4–6]. 

Wild pigs (Sus scrofa) are distributed through much of the world and have become 
invasive in most of their range. Wild pigs are the most abundant wild exotic ungulate in 
the United States. Wild populations in the United States are a mixture of domestic pig, Eura-
sian wild boar, and the hybrids of these two forms [7]. In a recent survey of wild pig popula-
tions, the Animal and Plant Health Inspection Service reported wild pigs occurring in 33 U.S. 
states, spanning from California to Virginia, with isolated populations further north [8]. Esti-
mates of the total United States population are up to 6.9 million animals by 2016 [9], with as 
many as 2.6 million occurring in Texas [10]. However, Mellish et al. 2014 [11] reported popu-
lation sizes increased ranging from 3.6 to 16.9 million in 5 years based on an estimated a mean 
annual growth rate of 0.32.  

A primary challenge in vertebrate invasive species management is the delineation of 
management zones. Effective management requires a twofold action: definition of a target 
area for management and ensuring containment of the managed area. Therefore, practi-
tioners must manage at the scale of local populations, and identify and target dispersal 
corridors [12,13]. One problem is how to define the target area when there are no obvious 
breaks or population boundaries and little specific knowledge of animal movements and 
dispersal in the management area. Animal movements are typically not random across 
the landscape but are influenced by a variety of environmental and social factors. Man-
agement decisions informed by population structure, including natural population 
boundaries and dispersal corridors (rivers, streams, etc.), dramatically increase the suc-
cess of management actions. In this manner, management efforts are concentrated at spe-
cific sites, thus increasing efficiency and effectiveness of management actions. 

Without prior knowledge, management zones are often defined arbitrarily (e.g., ac-
cording to political boundaries) or with the best available knowledge. Traditional wildlife 
investigations, involving tagging and radio-telemetry, can provide valuable information 
on animal movements and dispersal but are time-consuming and limited by constraints 
on sample size. Accordingly, an increasing number of studies use genetic information to 
assist large-scale applied management [14–19]. 

Our objective was to apply a landscape-scale analysis of population genetic structure 
of wild pigs to aid in their management in southern Texas. This region includes agricul-
tural areas where landowners experience significant damage to crops, rangeland ecosys-
tems, and natural resources due to abundant populations of wild pigs. This is also an area 
where wild pigs are hunted recreationally and live-trapped for commercial pork markets. 
Understanding how wild pig populations are structured will provide a foundation for 
development of contingency plans in the event of exotic disease outbreaks and assist in 
the delineation of management zones to establish more effective management strategies.  

2. Materials and Methods 
2.1. Sample Collection, DNA Extraction, and Amplification 

We obtained tissue (muscle) samples from wild pigs at 24 sites (Figure 1) throughout 
southern Texas from 2005–2009: Aransas National Wildlife Refuge (AR), Cameron County 
(CAM), Choke Canyon State Park (CC), Kubala’s Ranch (COD), Comanche Ranch (CR), 
Cuero County (CU), Don Ricardo pasture, Laureles Division of King Ranch (DR), Duval 
County (DU), El Pintor Ranch (EP), Jim Hogg County (JH), Jim Wells County (JW), 
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Kenedy Ranch (KEN), Killam Ranch (KIL), Gallito pasture, Laureles Division of King 
Ranch (KRG), the Texas A&M Extension Service La Copita Research Area (LAC), Lower 
Rio Grande Valley National Wildlife Refuge (LRG), La Salle County (LS), Rancho Escon-
dido (RE), San Diego County (SAD), Santa Gertrudis division of King Ranch (SGE), South 
Pasture, Texas A&M University-Kingsville (SP), Willacy County (WILL), Wilbarger Tract, 
Lower Rio Grande Valley National Wildlife Refuge (WT), and Rob and Bessie Welder 
Wildlife Refuge (WWR). We trapped, hunted, aerial gunned, and euthanized animals (as 
part of population control and eradication efforts) at georeferenced locations within each 
site prior to tissue collection. We placed tissue samples in 70% ethanol and stored them at 
−20 °C. We extracted total DNA using a commercial kit (Qiagen DNeasy, Qiagen Ge-
nomics, Bothell, Washington, DC, USA). We genotyped 13 microsatellite DNA markers 
that were designed as part of the Pig Genome Mapping Project. These loci are polymor-
phic, unlinked, and easy to amplify and score. Marker loci were amplified using the pol-
ymerase chain reaction (PCR) [19]. The PCR products were loaded onto an ABI 3130 au-
tomated DNA sequencer (Applied Biosystems, Foster City, CA, USA) for separation and 
detection. We binned and assigned alleles and constructed multilocus genotypes for all 
individuals using GeneMapper (Applied Biosystems, Foster City, CA, USA).  

 
Figure 1. Study sites and sampling locations of tissue samples distributed along southern Texas. 
Study sites are labeled in the figure. Aransas National Wildlife Refuge (AR), Cameron County 
(CAM), Choke Canyon State Park (CC), Kubala’s Ranch (COD), Comanche Ranch (CR), Cuero 
County (CU), Don Ricardo pasture, Laureles Division of King Ranch (DR), Duval County (DU), El 
Pintor Ranch (EP), Jim Hogg County (JH), Jim Wells County (JW), Kenedy Ranch (KEN), Killam 
Ranch (KIL), Gallito pasture, Laureles Division of King Ranch (KRG), the Texas A&M Extension 
Service La Copita Research Area (LAC), Lower Rio Grande Valley National Wildlife Refuge (LRG), 
La Salle County (LS), Rancho Escondido (RE), San Diego County (SAD), South Pasture-Texas A&M-
Kingsville (SP), Willacy County (WILL), Wilbarger Tract, Lower Rio Grande Valley National Wild-
life Refuge (WT), Rob and Bessie Welder Wildlife Refuge (WWR), and Santa Gertrudis division of 
King Ranch (SGE). 

2.2. Locus Properties and Genetic Differentiation among Populations 
We estimated allelic richness [20] and evaluated departures from Hardy–Weinberg 

equilibrium in FSTAT [21]. We assessed significance of departure from Hardy–Weinberg 
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expectations by 1000 randomizations of alleles among individuals and corrected for mul-
tiple comparisons using a Bonferroni procedure [22]. We tested for a relationship between 
genetic and geographic distance to determine if population structure follows isolation by 
distance pattern [23]. This is because Bayesian clustering algorithms may overestimate the 
number of genetic clusters in continuous populations, where genetic structure may be a 
function of geographic distance among clusters [18]. We performed a Mantel test [24] to 
assess the correlation between the geographic and genetic distance matrices by 10,000 per-
mutations of rows and columns using the computer program Genepop 3.4 [25]. We quan-
tified the Euclidian geographic distance among all pairs of sampling sites, then computed 
the pairwise genetic distance across sites using Nei’s Ds [26], which indicates the genetic 
similarity based on allele frequencies per locus among populations. The Ds values range 
from 0 to 1, where 0 denotes similar allele frequencies, and 1 denotes no allele sharing. We 
used SPAGeDi 1.2 [27] to calculate and construct the genetic and geographic distance ma-
trices. 

We evaluated genetic structure and differentiation among populations using both 
fixation statistics and Bayesian clustering methods. We quantified broad-scale population 
structure among the 24 sites by computing an overall FST value [28], which measures the 
differentiation of subpopulations relative to the total sample, as an index of population 
structure. We employed 2 separate Bayesian clustering algorithms to evaluate population 
structure, both with and without considering the spatial location of samples. First, we 
used a Bayesian implementation in the program Structure 2.2 to group individuals into 
clusters (K) that minimize Hardy–Weinberg and linkage disequilibrium without regard 
to population of origin [29]. We used a burn-in of 150,000 repetitions, followed by 250,000 
MCMC iterations, assuming allele frequencies were correlated. We modeled from K = 
1−24 clusters, 10 repetitions of each cluster. We used the ΔK statistic, the second order rate 
of change of the likelihood distribution [30], to determine the number of genetic clusters 
in the data set. Admixture proportions (q-values) for each individual, based upon MCMC 
runs where K was set at the best fit, were used to define cluster membership. Individuals 
were considered to be assigned to a cluster if q > 0.8; individuals with q < 0.8 were consid-
ered admixed. 

Second, we also performed a Bayesian clustering analysis that used spatial infor-
mation and implemented in the program BAPS 4.2 [31]. This Bayesian method character-
izes genetically differentiated clusters based on genetic data and geographical location of 
samples. BASP attempts to identify populations with different allele frequencies, rather 
than attempting to minimize HWE and linkage disequilibrium, as in Structure 2.2, there-
fore these two methods are complementary. Stochastic optimization is used in BAPS 4.2 
to assume posterior mode of the number of subpopulations, where spatial location of sam-
ples and allele frequency divergence among sampling sites are considered [32]. We con-
ducted the spatial clustering analysis, setting the maximum number of clusters at 24; we 
performed 10 repetitions for each cluster to evaluate consistency among runs. The pro-
gram reports the probabilities for different numbers of genetic clusters and determines 
the optimal partition. Stored results based on log-likelihood values in BAPS 4.2 are merged to 
compute a distance matrix among genetic clusters based on the Kullback–Leibler distance that 
can be used as a relative measure of genetic divergence between genetic clusters [31]. We con-
structed a neighbor-joining tree [33] based on the Kullback–Leibler distances from Structure 
2.2 and BAPS 4.2 using the computer program Mega 4.0 [34] to visualize similarity among 
genetic clusters.  

Third, we conducted a Principal Components Analysis (PCA) using the adegenet 
package [35,36] for R software. Principal Components Analysis (PCA) will provide a de-
scription of a large number of measurements (e.g., alleles) reducing them to a few dimen-
sions (e.g., clusters) to explain patterns on the data. In addition, we conducted a Discrimi-
nant Analysis of Principal Components (DAPC) [35] using the adegenet package [36] for R 
software. Discriminant Analysis of Principal Components (DAPC) will provide a descrip-
tion of clusters using linear combinations of alleles; these combinations are known to have 
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the largest between-groups variance and the smallest within-group variance [36]. Bayes-
ian information criterion (BIC) is provided to describe the numbers of clusters (k). 

3. Results 
We genotyped 1258 adult (≥1 year old) wild pigs from 24 sites at 13 microsatellite loci 

(Table S1). We detected no departures from HWE in populations after Bonferroni correc-
tion (Table S1). We found no evidence of linkage disequilibrium. The analysis of genetic 
and spatial distance revealed no support for isolation by distance pattern (Figure 2). For 
instance, Ds values were similar between geographically proximate and geographically 
distant sites (WILL—WT and CAM—CR, respectively). The DR and KRG sites had the 
least genetic divergence (Ds = 0.026), while AR and WILL had the greatest genetic diver-
gence (Ds = 0.920). Similarly, the AR and WWR sites are located ca. 50 km apart but were 
genetically divergent (Ds = 0.239); likewise, pairwise Ds values of 0.03, 0.59, and 0.14 were 
observed at geographic distances of 2 km, 138 km, and 381 km, respectively. The Mantel 
test results revealed no statistically significant relationship between genetic and spatial 
distance (Figure 2). The slope of the linear model was nearly 0 (y = 0.0006x + 0.2382) and 
the matrix correlation was not significantly different from 0.0 (Spearman Rank correlation 
coefficient, p > 0.09; Figure 2).  

 
Figure 2. Mantel test based on Ds genetic distance and Euclidean spatial distance (km). There was 
no relationship between genetic and geographic distance in wild pigs sampled in 24 sites during 
2005−2009 in southern Texas, USA. 

At a broad scale, wild pig populations displayed a moderate degree of genetic struc-
ture (FST = 0.11 ± 0.005). The FST pairwise comparisons among the 24 sites ranged from 
0.030 to 0.312, with 236 pairwise comparisons statistically different from 0.0, Table S2). 
Overall, the FST values generally corresponded to the Ds values. The WILL and AR were 
the most genetically divergent sites (FST = 0.312; Table S2), while the SAD and DU (FST = 
0.032; Table S2) and WILL and WT displayed the greatest genetic similarity compared to 
the rest of the study sites (FST = 0.030).  

The posterior probability for number of discrete genetic clusters from Structure was 
close to 1.0 for K = 10 genetic clusters; the ΔK method of Evanno et al. [30] (Table S3) also 
supported K = 10 discrete genetic clusters (Figure S1). The sampling sites grouped into 
genetic clusters were broadly distributed, discrete, or highly admixed (Figure 3). Sites AR-
LS, CAM-LRG, CR-KIL, DR-KRG-SGE, and KEN-WILL-WT were partitioned together, 
whereas sites CC, COD, EP, WWR, and SAD appeared to represent discrete clusters (Fig-
ure 3). The CU-RE-JW-DI-LAC-SP-JH sites had a high degree of admixture.  
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Figure 3. Geographic distribution of genetic clusters based on the best partition generated in the Bayesian clustering algo-
rithm, Structure 2.2 (a) (assuming K = 10) and in the Bayesian spatial clustering algorithm BAPS 4.2 (b) (assuming K = 12) 
from wild pigs collected in 24 sites during 2005−2009 in southern Texas, USA. 

The spatially explicit clustering from BAPS produced a probability of >0.99 for 12 
genetic clusters in the region. Both Structure and BAPS were consistent with the Mantel 
test in finding no support for a relationship between genetic and geographic distance, as 
genetically distinct clusters occurred in geographically proximate sites, while sampling 
sites in the same genetic cluster were broadly dispersed geographically. The BAPS results 
indicated that the CAM-LRG, CU-DU-JH-JW-LAC-LS-RE-SAD-SP, WILL-WT, CR-KILL 
sites, and the DR-KRG sites represented five genetic clusters. In contrast, the AR, CC, EP, 
COD, KEN, SGE, and WWR sites represented genetically discrete clusters. Only four sites 
out of 24 (if the admixed sites are considered as a single cluster), LS, SGE, KEN, and SAD, 
differed from the Structure 2.2 partition (Figure 4). The LS and SAD sites became part of the 
admixed group, while SGE and KEN were differentiated as discrete clusters (Figure 4). The 
Kullback–Leibler neighbor-joining tree illustrates genetic differentiation among the 12 clusters 
delineated using the BAPS algorithm (Figure S2) and offers a further indication of the similar-
ity between the Structure and BAPS results. Most differences between the two algorithms 
corresponded to populations with low Kullback–Leibler divergence, such as KEN and the 
WIL-WIT cluster, SGE and the DR-KR cluster, and the AR and LS clusters (Figure S2). No 
clusters were identified using the PCA (Figure S3), similarly no clusters were identified 
using DAPC, BIC decreased with the number of clusters (k) and not breakage on the line 
was detected (Figure S4). 

(a) (b) 
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Figure 4. Wild pigs sampled at 24 sites during 2005–2009 in southern Texas, USA. Each individual is represented by a 
vertical line, which is partitioned into colored segments that represent the individual’s estimated membership fractions in 
the K = 10 genetic clusters derived from the Bayesian clustering algorithm Structure 2.2. Sampling sites are labeled below 
the figure. Aransas National Wildlife Refuge (AR), Cameron County (CAM), Choke Canyon State Park (CC), Kubala’s 
Ranch (COD), Comanche Ranch (CR), Cuero County (CU), Don Ricardo pasture, Laureles Division of King Ranch (DR), 
Duval County (DU), El Pintor Ranch (EP), Jim Hogg County (JH), Jim Wells County (JW), Kenedy Ranch (KEN), Killam 
Ranch (KIL), Gallito pature, Laureles Division of King Ranch (KRG), the Texas A&M Extension Service La Copita Research 
Area (LAC), Lower Rio Grande Valley National Wildlife Refuge (LRG), La Salle County (LS), Rancho Escondido (RE), 
Santa Gertrudis division of King Ranch (SGE), San Diego County (SAD), South Pasture-Texas A&M-Kingsville (SP), Wil-
lacy County (WILL), Wilbarger Tract, Lower Rio Grande Valley National Wildlife Refuge (WT), and Rob and Bessie 
Welder Wildlife Refuge (WWR). 

4. Discussion 
Wild pig populations were structured genetically across southern Texas, indicating 

that some populations were isolated from one another. However, many individuals and 
local populations were admixed, which indicates that multiple introductions and artificial 
movement of individuals has occurred. Furthermore, the genetic clusters were not re-
sponding to isolation by geographic distance; some members of the same cluster were 
widely dispersed. A degree of admixture in populations of wild pig is not surprising. Wild 
pigs have been present in Texas for more than 300 years and are derived from a mixture 
of escaped domestics and wild pigs from Eurasia released for hunting [37]. However, our 
genetic data suggest the demographic history of wild pigs appears more complicated than 
anticipated.  

The two Bayesian approaches implemented here produced similar results, with mi-
nor differences in number of clusters. Whereas the Structure analysis supported 10 clus-
ters as the best partition given the data, BAPS identified 12 clusters when spatial locations 
were considered. Structure was inconclusive assigning 7 sampling sites to a discrete ge-
netic cluster due to the high degree of admixture. The BAPS algorithm clustered the 7 
admixed populations as a single genetic cluster. The discrepancy, although slight, may be 
partly due to different method of clustering (e.g., minimizing HWE and linkage vs. allele 
frequency divergence). This incongruence between Structure and BAPS has been fre-
quently reported, and BAPS tends to increase the number of clusters [18,38–41]. However, 
admixed individuals from geographically dispersed sites may have complicated the BAPS 
analysis, as the spatial data are used as priors in the clustering analysis. The seven ad-
mixed sites are located in an area where large contiguous properties are rare; thus, illegal 
translocation may be common in the area, exchanging pigs from one property with others. 



Animals 2021, 11, 168 8 of 12 
 

 

Wild pig populations in Florida showed a similar pattern of high level of admixture sug-
gesting human-mediated dispersal [42]. The PCA and DAPC reassured the presence of 
admixed individuals (Figures S3 and S4). Our data resembled genetic structure in popu-
lations of large mammals that were restored through the use of disparate genetic stocks 
[43] where genetically similar populations are widely dispersed. However, reports of mul-
tiple introductions and artificial movements of invasive species have appeared in the re-
cent literature, suggesting that admixture in populations of invasive species may become 
increasingly common [18,42,44,45]. We cannot determine the effect of historical admix-
ture, but the genetic data suggest many translocations have occurred in the recent past 
and may be ongoing. Researchers had reported historical admixed ancestry on wild pigs 
introduced in the United States with Western heritage breeds and European wild boar of 
the highest input [46]. 

Unfortunately for practitioners tasked with managing wild pigs, we identified few 
barriers to movement other than urban areas and expansive agriculture. The conversion 
of additional rangeland to crops that might form a suitable barrier is not recommended 
and urban development tends to radiate outward from existing sites. Therefore, wild pig 
damage will likely continue or intensify in the foreseeable future in the region. Lack of 
substantial geographic barriers to movements indicates that achieving long-term wild pig 
control may be difficult due to large geographic extent of populations and ability to re-
colonize managed areas from nearby viable populations. Texas has very little public land 
(<3%), and current management efforts aimed at alleviating local damage are conducted 
at relatively small spatial scales, from a few hundred to several thousand ha [47,48]. The 
formation of management cooperatives among landowners may be necessary to manage 
spatially extensive areas of southern Texas.  

Large-scale management of wild pigs may be necessary to achieve control in extreme 
circumstances, such as a foreign animal disease outbreak (i.e., foot and mouth disease). 
New management tools will be needed for such contingencies, lending support for ongo-
ing research on toxicants [47,49,50], fertility control agents [51–53], vaccines [54], and oral 
delivery systems for these pharmaceuticals [55–58]. If large-scale control efforts are nec-
essary, the integration of adaptive management and fine-scale spatial data may aid in con-
trol efforts [59]. 

Translocations had a persistent effect on genetic structure. Therefore, it will be diffi-
cult to use molecular tools to verify point of origin for illegal translocations or disease 
management [60] because similar genetic stocks are present in multiple areas. Further-
more, wild pigs have expanded their geographic range in Texas and elsewhere during the 
past two decades. The rapid expansion of wild pigs may be due more to human-mediated 
transport than to natural dispersal, as observed in other invasive species [42,44]. Each spe-
cies and introduction have a unique invasion history that may result in different demo-
graphic outcomes [61]. Nevertheless, the easiest means of preventing colonization into 
new areas will be to halt translocations and other human-mediated transport [62]. This 
will require enforcement of existing regulations and greater public awareness.  

5. Conclusions 
These results are an attempt to understand the genetic structure and movement pat-

terns of feral pigs in southern Texas. We expect that this study will have a significant im-
pact increasing the efficiency of control methods and helping define the geographic area 
over which control methods should be conducted to achieve long-term results. However, 
the degree of human-mediated admixture, involving individuals from disparate popula-
tions, may have complicated the genetic analyses. The admixed sites are located in an area 
where large contiguous properties are rare; thus, illegal translocation may be common in 
the area, exchanging pigs from one property to others. It appears that the Structure parti-
tion may be a more realistic and coherent partition due to highly degree of admixture and 
landscape characteristics among the admixed sites. Differences in USA wild pig popula-
tions compared to Australia and Europe include historical and ongoing undocumented 
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translocations and water lack or availability distributed along the landscape for livestock. 
These two factors contribute to a high degree of admixture among wild pigs in USA. Man-
agement cooperatives may be necessary to manage spatially extensive areas of southern 
Texas. Facing the difficulty of large-scale wildlife management for diseases, damages, and 
invasiveness, wildlife management personnel may be able to improve the efficiency and 
effectiveness of large-scale management if they can consider terrain features that affect 
animal movements and population structuring.  

Supplementary Materials: The following are available online at www.mdpi.com/2076-
2615/11/1/168/s1, Table S1: Observed (HObs) and expected heterozygosity (HExp), number of alleles 
(n) at each of the 13 microsatellite DNA loci amplified in wild populations in 24 study sites during 
2005−2009 in southern Texas, USA. All loci are in Hardy–Weinberg equilibrium, Table S2: Nei’s 
(1972) Ds genetic pairwise genetic distance (upper matrix) and Weir and Cockerham’s (1984) FST 
pairwise 5 comparisons among 24 study sites (lower matrix) during 2005–2009 in southern Texas, 
USA. The RE and SP sites did not have enough sample size to perform the analysis. Asterisks indi-
cate FST values that are statistically different from 0.0, Table S3: Estimated posterior probability and 
their variance based on Bayes’ Rule for the 11 best partition for the number of populations in Struc-
ture 2.2 [29]. Based on wild pigs sampled in 24 sites during 2005−2009 in southern Texas, USA. 
Model choice criterion (Ln P(D)); estimated model log-likelihood (Log P(K/X)); variance of the 
model choice criterion (Var(Ln P(D)), Figure S1: Second order rate of change of the likelihood dis-
tribution [30] for the best 18 partition of the genetic clusters generated in the Bayesian clustering 
algorithm, Structure 2.2, based on samples from 24 sites collected during 2005−2009 in southern 
Texas, USA. The 2nd order rate of change of the likelihood distribution corresponds to K = 10 dis-
crete genetic clusters, Figure S2: Neighbor-joining unrooted tree for the Kullback–Leibler divergence 
matrix produced by Structure 2.2 (a) and BAPS 4.2 (b). The Kullback–Leibler can be used as a genetic 
distance matrix among 10 clusters produced by Structure 2.2 and 12 clusters produced by BAPS 4.2. 
The Bayesian clustering algorithms are based on wild pig samples collected in 24 sites during 2005–
2009 in southern Texas, USA, Figure S3: Wild pigs sampled at 24 sites during 2005−2009 in southern 
Texas, USA. 44 Each individual is represented by dot, and each color represents the individual’s 
collection site. PC1 explains 53% of the variance and PC2 explains 50% of the variance, Figure S4: 
Bayesian information criterion (BIC) describing the numbers of clusters 60 (k) for wild pigs sampled 
at 24 sites during 2005–2009 in southern Texas, USA. No clusters were identified using DAPC, BIC 
decrease with the number of clusters (k), and no breakage on the line was detected. 
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