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INTRODUCTION

The landscape of fear (LOF; Laundre et al., 2001) hypoth-
esis states that prey species perceive spatial variation in
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Abstract

The landscape of fear (LOF) hypothesis is a unifying idea explaining the effects of
predators on the space use of their prey. However, empirical evidence for this
hypothesis is mixed. Recent work suggests that the LOF is dynamic, depending
on the daily activity of predators, which allows prey to utilize risky places during
predator down times. While this notion clarifies some discrepancies between pre-
dictions and observations, support for a dynamic LOF remains mixed. The under-
lying assumption of a dynamic LOF is strong predictability in predator activity
cycles. Work in multi-predator systems demonstrates the effect of differential
behavior between predator species on the predictions of prey space use. However,
none have considered the effect of intraspecific variation in predator behavior.
Most, if not all, dynamic LOF studies base inference on the species-level average
activity pattern, implicitly assuming similarity within the predator population.
We examined the dynamics and intraspecific variation in activity cycles within a
population of coyotes (Canis latrans). We found seasonality in the predictability
of coyote behavior, as well as divergent nocturnal and crepuscular activity pat-
terns between individuals during summer. Activity dynamics were not related to
range size, sex, body mass, or habitat complexity, but did vary by year. These
results suggest that the predictability of activity patterns is seasonally dynamic,
and failure to account for intraspecific variation in activity may cloud inference in
LOF studies. We argue that future studies should not neglect the potential com-
plexity of predator behavior with simplistic assumptions. By considering intraspe-
cific variation in activity patterns, we may gain a clear picture of LOF dynamics.

KEYWORDS
activity cycles, autocorrelation, Canis latrans, coyote, functional data analysis, GPS
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predation risk and navigate this landscape to balance for-
aging requirements and risk. This phenomenon is
thought to underlie behaviorally mediated trophic cas-
cades (Bliecher, 2017), and explain nonconsumptive
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effects of predators on prey species (Preisser et al., 2005).
However, empirical evidence of LOFs has been mixed in
the literature (Palmer et al., 2017). Recent work suggests
that this landscape is dynamic at multiple timescales, and
is influenced by the activity patterns of predators (Kohl
et al., 2018; Palmer et al., 2017). Because of this dyna-
mism, spatial segregation of predators and prey changes
through time, masking LOF predictions if time was not
considered. Thus, predator diel cycles are linked to tro-
phic cascades, and may have far-reaching impacts on
communities and ecosystems (Bliecher, 2017).

The underlying assumption of a dynamic LOF is
strong predictability of predator cycles (Dodson, 1990;
Smith et al., 2019). Behavioral differences among preda-
tor species in multi-predator systems can impact the pre-
dictability of predation risk (Schmidt & Kuijper, 2015).
For example, Morosinotto et al. (2010) observed differen-
tial behavioral responses of pied flycatchers (Ficedula
hypoleuca) to two superficially similar species of owl
(family: Strigidae) with different activity patterns. One
would not accurately predict prey response by consider-
ing only one predator behavior. We posit that the same
may be true of different behaviors across individuals
within a predator species.

Most studies of the temporal dynamics of a LOF
implicitly assume that cycles in activity, such as noctur-
nal or crepuscular behavior, are similar across individ-
uals within predator populations (Eriksen et al., 2011;
Palmer et al., 2017). However, this may not be true for
many species (Kohl et al., 2018; Smith et al., 2019). Many
predators exhibit dietary and behavioral plasticity across
individuals, which contributes to the broad distribution
of many species (Slayter et al., 2013). Although some
LOF studies consider behavioral variation of a predator
species across regions (e.g., Yang et al., 2018), variation
among individuals within a local population has not been
considered. Predators within a population can vary daily
activity cycles to reduce both inter- and intraspecific com-
petition (Alanara et al., 2001; Lucherini et al., 2009),
which are in turn linked to foraging strategies (Polansky
et al., 2013). Thus, not all individuals within a predator
population necessarily represent the same risk to a given
prey species.

Prey species may perceive differences in risk between
individual predators directly, or by recognizing spatio-
temporal variation in risk of predation events rather than
the risk of encountering predators per se (Lank &
Ydenberg, 2003; Palmer et al., 2017). Ungulates appear
able to distinguish differences in risk posed by predators
of the same species (Gese, 1998). If indeed prey can dis-
tinguish threatening from nonthreatening predators,
regardless of the mechanism, the activity cycles of threat-
ening predators are of interest. If the behaviors of

threatening individuals manifest in different activity
cycles than those nonthreatening ones, the overall pat-
tern of the predator species will reflect a combination of
distinct, component behaviors. Failing to account for
these differences will bias parameter estimates, and add
unmodeled statistical noise to analyses. Thus, inference
into the effects of predator activity on their prey may be
confounded by differential behavior, foraging, and per-
ceived threat to prey among predators in the same popu-
lation. Ignoring this variation could cloud inference in
LOF settings but is difficult to address, given the small
sample sizes and capture biases typical of carnivore stud-
ies (Kohl et al., 2018; Thompson et al., 2012). Researchers
need information on the dynamics of the activity cycles
of individuals in order to explicitly account for their
effects, or control for them in study designs.

As a model, we examined the degree and nature of
behavioral variation within a population of a generalist
carnivore: the coyote (Canis latrans). Coyotes are a ubiqg-
uitous species in North America that exhibits a great deal
of behavioral variation (Bekoff & Gese, 2003; Bekoff &
Wells, 1986). Their wide range and generalist, predatory
habits have led to many conservation and management
issues—ranging from impacts on endangered species
through predation (Boisjoly et al., 2010) or hybridization
(Hinton et al., 2018), to agricultural impacts on crops
(Holzman et al, 1992) and livestock (Sacks &
Neale, 2007), to the spread of zoonotic diseases (Way &
White, 2013). Despite the numerous issues associated
with coyotes, and the importance of animal behavior in
effective conservation and management (Berger-Tal
et al., 2011), factors affecting coyote activity cycles are
poorly understood.

Few studies examine individual variation in coyote
activity cycles, but scientists recognize some tendencies.
For example, coyotes tend to exhibit nocturnal (Holzman
et al., 1992) or crepuscular behavior (Andelt, 1985; Arias-
Del Razo et al, 2011; Gipson & Sealander, 1972;
Woodruff & Keller, 1982). If individual coyotes choose
between alternative activity strategies, researchers will
need reliable predictors to differentiate individuals
exhibiting similar patterns. Which strategy an individual
adopts may depend on straightforward predictors, such
as sex, habitat characteristics, or resident status. Male
and female activity patterns may diverge during the
breeding season, when females are thought to exhibit less
evening activity than males (Andelt, 1985; Way
et al., 2004). This relationship could potentially guide the
timing of sex-targeted management actions to reach con-
servation goals. Coyotes may also adapt their hunting
strategies to the structure of their habitats, where the suc-
cess of a particular hunting strategy will depend on vege-
tation density and visibility (Arias-Del Razo et al., 2012;
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Thibault & Ouellet, 2005; Ward et al., 2019). Thus, vege-
tation density may be linked to activity cycles (Kitchen
et al., 2000), and could be manipulated to achieve conser-
vation goals. Finally, Andelt (1985) reported limited evi-
dence that diel activity cycles varied by territorial
residency status, which manifests in individual range
sizes (Kamler & Gipson, 2000) and may be related to
body mass (Bekoff & Wells, 1986). Lethal management
efforts disproportionately target nonresident coyotes
(Sacks et al., 1999), which may bias them toward a partic-
ular activity pattern if this relationship holds. Because of
this, range size and body mass may be indicative of a
relationship between residency status and activity.

We examined variation in the dynamics of coyote
activity patterns within an unharvested coyote popula-
tion in southern Texas. We quantified activity cycles
through time to examine seasonal trends and inter-
individual variation in activity dynamics. We then
checked for evidence of multiple, simultaneous patterns
of activity dynamics, which would undermine the appro-
priateness of population-level activity patterns for LOF
studies. We then related their variation to simple predic-
tors to determine whether they could serve as reliable
indicators of activity dynamics. Finally, we evaluated the
implications of our results for inference in LOF
dynamics.

METHODS
Study area

This study was conducted on the East Foundation’s San
Antonio Viejo Ranch (SAVR), approximately 61,000 ha
of Jim Hogg and Starr counties in southern Texas
(Latitude: 26.9557321, Longitude: —98.8335374;
Figure 1). The East Foundation’s ranches are managed as
a living laboratory to promote the advancement of land
stewardship through ranching, science, and education.
The area is dominated by shrub savannas, primarily com-
posed of honey mesquite (Prosopis glandulosa), prickly
pear (Opuntia spp.), cat-claw acacia (Acacia greggii),
blackbrush (Acacia rigidula), whitebrush (Aloysia
gratissima), and granjefio (Celtis pallida), with early to
mid-successional grasses, including three-awns (Aristida
spp.), little bluestem (Schizachyrium scoparium), and
windmill grasses (Chloris spp.). Lethal harvest and
harassment of native animals, including coyotes, has not
occurred on SAVR since the East Foundation’s inception
in 2007. Further, coyotes were only harvested occasion-
ally on the ranch over its recorded history, and there
were no substantive lethal management efforts between
1915 and 2007. This region persistently features high

coyote densities (Andelt, 1985; Bekoff & Gese, 2003;
Knowlton, 1972; Windberg, 1995). These characteristics
provide a unique opportunity to study activity dynamics
in an unharassed, saturated coyote population.

Coyote capture and telemetry

We captured a total of 40 coyotes across three capture
events by helicopter using a net gun (Gese et al., 1987).
Captures occurred on 10 December 2016 (n = 10) and
1 April 2017 (n = 6), and 25-26 January 2018 (n = 24).
We fitted each coyote with a Vertex Plus or Vertex Lite
satellite GPS collar (Vectronic Aerospace GmbH, Berlin),
and released it at the site of capture. Collars deployed in
2016-2017 were programmed to release from the animal
on 1 January 2018, while those deployed in 2018 were
programmed to release on 31 January 2019. These collars
were programmed to collect location data every
1 (n = 24) or 2 (n = 16) hours. We filtered hourly data to
2-h intervals to standardize across all collars. Three coy-
otes died within 3 months of their respective capture
dates and were excluded from these analyses. An addi-
tional four collars failed over the course of the study,
leaving n = 31 coyotes considered in this study. We col-
lected an average of 4189 locations per coyote (SD = 465)
during the study period.

Statistical analyses

Except where indicated, all analyses were performed in R
(R Core Team, 2017). We estimated individual range size
as the area of the 75% isopleth of a fixed kernel density
estimate of each individual’s utilization distribution
(Worton, 1989) using the adehabitatHR package (Calenge
et al., 2009).

We estimated percent canopy cover within coyote
ranges based on 1-m resolution National Agricultural
Imagery Program imagery from 2016 (https://tnris.org/;
accessed 24 April 2017). These images were merged and
color matched in ArcGIS 10.4 (ESRI, Redlands, CA).
Pixels were classified as woody canopy cover or noncover
using an interactive  supervised classification
(Campbell & Wynne, 2011). We used a roving window to
calculate percent canopy cover at 10-m resolution. We
calculated the average canopy cover within each coyotes’
range using zonal statistics tools in the spatial analyst
toolbox, within ArcGIS.

We converted each series of locations to a trajectory
of movement vectors, defined in terms of step lengths
and turning angles, using the adehabitatLT package
(Calenge et al., 2009). Since locations were collected on a
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FIGURE 1 Map showing the location of the San Antonio Viejo Ranch, in Jim Hogg and Starr counties of southern Texas
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regular time interval, we took the sequence of step
lengths as a measure of net movement activity through
time (Turchin, 1998). Missing values resulting from mis-
sed GPS fixes were interpolated using the weighted mov-
ing average procedure implemented in the imputeTS
package (Moritz & Bartz-Beielstein, 2017). The average
fix success rate was 0.98 (SD = 0.015), thus any effects of
missed fixes or the interpolation of the step length series
were assumed to be negligible.

We adapted the analytic approach of Cushman
et al. (2005) for the analysis of nonstationary animal activ-
ity patterns. They used a roving window approach to exam-
ine changes in autocorrelation of elephant space use,
capturing complex changes in behavior through time. We
applied a similar roving window to capture changes in tem-
poral autocorrelation in coyote velocity. Patterns in auto-
correlation reveal hidden periodicities in time series, and
allow visual differentiation of patterns, such as crepuscular
and daily behavior cycles, including nocturnal and diurnal
behavior (Boyce et al, 2010). We used 15-day, non-
overlapping windows beginning on 10 December and
advancing by 15 days until 31 January of each collar year.
We chose a 15-day window in order to ensure adequate
estimates of the function over enough lags to show any
meaningful periodicities within the window. This relaxes
the assumption of stationary autocorrelation to local
stationarity, allowing us to capture changes in activity
cycles over the course of the series. We estimated an auto-
correlation function for each individual over 50 lags (100 h,
using 180 steps/window) within each window as

IS (X X) (X X)
p‘r_ SO >

1)

where p, is autocorrelation at lag 7, X, is the value of the
time series of coyote velocity at time ¢, X is the mean of
coyote velocity time series, and S, is the variance of the
series (Venables & Ripley, 2002). The result is an autocor-
relation surface (ACS) with lags on the x-axis, the win-
dow sequence on the y-axis, and autocorrelation on the z-
axis. The surface is interpretable visually, with variation
on the x-axis reflecting the periodicities in activity cycles
(sensu Boyce et al., 2010) and variation along the y-axis
representing changes in activity cycles through time. By
using a 15-day window, the surface captures variation in
activity patterns continuously over the monitoring
period, permitting interpretation of seasonal patterns
without the information loss that results from assuming
discrete seasons. More subtly, by evaluating autocorrela-
tion over 501ags (100 h), we are able to detect dampening
in autocorrelation at longer lags, which indicates the
changing behavior over the course of the window (Boyce
et al.,, 2010). This combination of window length and

multi-day lag intervals allows the researcher to detect
behavioral changes at multiple temporal scales simulta-
neously. More generally, the ACS is a bivariate function
representing the maximal amount of information about
the individual’s activity patterns, and serves as the sam-
ple unit in further analysis (Ramsay & Silverman, 2002).

We took the mean and standard deviation at
corresponding cells across all surfaces to produce a mean
and standard deviation surface, respectively. These are
analogous to the mean and standard deviation of
numeric data, but cannot be reduced to a single value
and are represented graphically. The mean surface repre-
sents the population-level trend in coyote behavior
dynamics while the standard deviation surface identifies
the regions of the surface that are most variable across
individuals.

Next we centered the ACS of each coyote by sub-
tracting the mean surface from each. We then calculated
the cell-wise L*> Minkowski distance between centered
surfaces (equivalent to Euclidean distance; Montero &
Vilar, 2014) to produce a nxn distance matrix. We
checked for behavioral clusters with complete linkage
clustering (Lance & Williams, 1967). This method is
robust to noise and produces maximally linked clusters
with clear discontinuities (Legendre & Legendre, 1998).
We then used permutational multivariate analysis of vari-
ance (PERMANOVA) (Anderson, 2001) to assess whether
overall similarity in coyote behavior dynamics could be
explained by sex, initial body mass, range size, brush can-
opy cover within ranges, or year with the vegan package
(Oksanen et al., 2019). A summary of individual coyotes
and their associated covariates is included in Appendix
S1: Table S1.

RESULTS

Box plots of step lengths by hour of day revealed a pro-
nounced lull in activity in the afternoon, thus we con-
sider daily periodicity in activity to represent nocturnal
behavior for all coyotes (Figure 2).

The mean ACS showed pronounced peaks in autocor-
relation at daily lag intervals (multiples of 12),
corresponding to a strong daily cycle in movements
(Figure 3). The overall magnitude of autocorrelation was
largest in the summer, meaning this was when coyote
activity was most strongly cyclic. Autocorrelation was
weak in the winter, indicating weakly cyclic or acyclic
activity patterns. This suggests that temporal variation in
coyote activity is least predictable by prey in winter. The
standard deviation surface revealed that the majority of
variation in autocorrelation was at crepuscular intervals
from mid-April through July, punctuated by a lull in
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Coyote Step Length Distribution by Time of Day
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FIGURE 2 Overall distribution of step lengths by hour of day
for coyotes on the San Antonio Viejo Ranch in 2017 and 2018. The
x-axis represents the hour of day and the y-axis represents the
length of 2-h steps. Note the pronounced lull in activity in the
afternoon, despite high variability
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FIGURE 3 The mean coyote autocorrelation surface of
coyotes on the San Antonio Viejo Ranch in 2017 and 2018. The
X-axis represents 2-h time lags, the y-axis represents the start date
of each 15-day time window, and the z-axis represents the
autocorrelation in movement velocity. The surface shows a
pronounced circadian rhythm in coyote activity, with positive
autocorrelation spikes at 12-lag (24-h) intervals. The strength of
autocorrelation peaks in mid-May and is weakest in mid-January

Coyote Autocorrelation Standard Deviation Surface
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FIGURE 4 The autocorrelation standard deviation of coyotes
on the San Antonio Viejo Ranch, in 2017 and 2018. The x-axis
represents 2-h time lags, the y-axis represents the start date of each
15-day time window, and the z-axis represents the standard
deviation of autocorrelation in movement velocity. This surface
shows two pronounced spikes in variation at crepuscular intervals
(6, 18, 30 lags, and so on) in early and late summer, respectively.
This is evidence of coyotes diverging between nocturnal and
crepuscular activity patterns across individuals

early June (Figure 4). In combination, these surfaces
reveal that the dominant, and least variable characteristic
in coyote activity is a circadian rhythm while crepuscular
behavior is the most variable behavior aspect across indi-
viduals, particularly in summer.

Complete linkage clustering revealed at least three
distinct groups of activity dynamics (Figure 5). One group
consisted of 5 individuals collared in 2016-2017, one con-
tained 6 individuals collared in 2018, and the third con-
tained 21 representing both years. The first group
featured a pronounced daily periodicity in activity in
summer, but very little evidence of cyclic activity in win-
ter (Figure 6a). The second group showed crepuscular
activity, which was weak in the winter, strong in the
summer, but faded to a daily cycle in the fall, and was
nearly acyclic by the end of the monitoring period (early
winter; Figure 6b). The third showed a similar daily cycle
to the first group, but was stronger in the winter and
weaker in the summer (Figure 6c). The strength of auto-
correlation diminished at longer lags more quickly than
the first group, indicating that the pattern was less stable
within time windows. This behavior represented approxi-
mately two thirds of the coyotes monitored across both
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FIGURE 5 Dendrogram of complete linkage clustering of autocorrelation surfaces (ACSs) representing coyotes on the San Antonio
Viejo Ranch in 2017 and 2018. Height represents the L> Minkowski distance between nodes. Results suggest the existence of at least three
groups. The left group (a) contains only coyotes from the second study year while the middle group (b) contains only individuals from the

first. The right (c) group contains individuals from both study years. This indicates the existence of at least two patterns of activity dynamics

within each year. The mean ACS of each group is presented in Figure 6 with the corresponding group letter

years and was the most common behavior group within
each year. PERMANOVA results showed no evidence of
sex or size bias in behavior patterns (Table 1). Range size
and habitat complexity were not related to similarity in
behavior cycles, but study year explained 10.0% of the
variance in the distance matrix (p =0.001; Table 1). At a
minimum, these results indicate the existence of at least
two distinct patterns of activity dynamics in each year
within the same population.

DISCUSSION

Our results indicate the dynamics of activity cycles within
an unharvested population of coyotes varied by individ-
ual. Individuals exhibited divergent nocturnal and cre-
puscular strategies simultaneously within the study area
(Figure 6). Consideration of such variation is lacking in
LOF research, despite the recent focus of ethology on
interindividual variation and animal personalities
(Dingemanse et al., 2009). Overall, autocorrelation was
weakest in winter and strongest in the summer (Figure 3;
ca. 01-01 and 11-01, and 06-01 on the date axis for winter
and summer, respectively). This may be a response to
extreme summer heat in this region, which would pro-
duce pronounced seasonality in activity patterns. Thus, if
we had searched for a dynamic LOF in the winter, we
would have been unlikely to find it since predator activity
showed little evidence of a predictable temporal cycle. In
such a case, the dominant variation in the LOF would be

spatial and consistent with early predictions (Laundre
et al.,, 2001). However, failing to account for temporal
variation in risk during the summer would mask real spa-
tial variation in risk that depended on activity cycles
(Kohl et al., 2018).

Previous studies suggest that the divergent dynamics
we observed may carry different implications for different
prey species. Coyote diets in southern Texas are most
consistent in winter, focusing on lagomorphs and white-
tailed deer (Odocoileus virginianus) carrion (Andelt, 1985;
Andelt et al., 1987). Activity cycles were consistently
weakest in the winter (Figures 3 and 4; ca. 01-01 and
11-01 on the date axis), when food resources are likely
most limited. Thus, the magnitude of a LOF may peak in
the winter for lagomorphs, but also be relatively constant
at daily timescales. This would result in clear spatial pat-
terns of risk because prey would not perceive predator
downtimes (sensu Smith et al., 2019) during which they
could utilize otherwise risky habitats. Indeed, Arias-Del
Razo et al. (2012) observed space use patterns consistent
with a LOF with coyotes and lagomorphs in northern
Mexico during winter, though their design controlled for
cyclicity in risk rather than evaluating it.

Conversely, white-tailed deer fawns are a key compo-
nent of coyote diets in summer (Andelt, 1985; Andelt
et al, 1987), when we observed coyotes diverging
between nocturnal and crepuscular behaviors (Figure 4;
ca. 06-01 on the date axis). Given strong cyclicity in coy-
ote activity, variation in risk throughout the day would
be most predictable by deer during this period. However,
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TABLE 1 Permutational multivariate analysis of variance
results examining the influence of range size, sex, body mass,
within-range woody canopy cover, and annual conditions on
similarity in activity dynamics of coyotes on the San Antonio Viejo
Ranch in 2017 and 2018

Estimate df SS R? F Pr(>F)
Range size 1 10.09 0.03 1.04 0.3090
Sex 1 9.52 0.03 0.99 0.4210
Body mass 1 11.05 0.03 1.14 0.1950
Canopy cover 1 11.70 0.04 1.21 0.1320
Year 1 34.48 0.11 3.57 0.0010
Residual 26 251.09 0.77

Total 31 327.94 1.00

Note: These results indicate none of the hypothesized predictors of activity
dynamics explained appreciable variation in the similarity between
autocorrelation surfaces. Year did explain 10.0% of the variation, suggesting
at least some coyotes adapted their activity to annual conditions.

if crepuscular or nocturnal hunting strategies are more
effective at catching fawns, the risk posed by a coyote to
the fawn will vary by which strategy they use. This is a
key question in both predator-prey dynamics, and man-
agement literature. The latter provides insight relevant to
our example. Does and fawns minimize activity overlap
with coyotes at crepuscular hours (Higdon et al., 2019).
Further, fawns in southern Texas were shown to avoid
activity at crepuscular hours, but not during the day or at
night (Jackson et al., 1972). This would minimize activity
overlap with crepuscular coyotes, but not with nocturnal
ones. If ungulates can distinguish differences in risk

FIGURE 6 Mean autocorrelation surfaces of each of the three
behavioral groups identified in our sample of coyotes on the San
Antonio Viejo Ranch in 2017 and 2018. These groups were
identified by complete linkage clustering, represented in Figure 5.
Group letters correspond between both figures. Each surface is
rotated to maximize the visibility of important structure. The first
group (a) features strong peaks in autocorrelation at daily intervals,
indicating a daily activity cycle. The amplitude in autocorrelation
peaks in the summer, suggesting that activity cycles are most
predictable in that season. There is little evidence of cyclic activity
in the winter (front of graph). The second group (b) features strong
autocorrelation at half-day intervals, which corresponds to
crepuscular activity. The crepuscular rhythms decay to a daily cycle
in the late summer and fall. While there is evidence of a weakly
crepuscular pattern in winter, autocorrelation peaks in the summer
within this group as well. The third group (c) is superficially similar
to (a); however, there is evidence of cyclic activity in the winter.
Despite this, the overall strength of autocorrelation is weaker
within this group for the rest of the year. The amplitude of
autocorrelation decreases at longer lags in this group, suggesting
that activity cycles were less stable within windows than group (a)
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posed by different coyotes (Gese, 1998), despite their pre-
dictability, the overall patterns of summer coyote activity
would poorly reflect daily risk dynamics from the per-
spective of a fawn.

Disentangling which coyotes pose particular risks to
certain prey requires reliable predictors of activity
cycles. However, we found no evidence of simplistic
associations between sex, range size, body size, or
woody canopy cover with patterns of activity (Table 1).
Thus, commonly hypothesized, simple predictors of
activity patterns appear unreliable. Without a way to
distinguish drivers of activity patterns, one cannot use
convenient activity proxies (e.g., game camera capture
rates) to assess perceived risk times if not all predators
within a species pose the same risk to a given prey. This
makes disentangling activity patterns, and isolating par-
ticular predators contributing to a dynamic LOF diffi-
cult. Interestingly, we found no relationship between
range size, which is linked to territory residency
(Kamler & Gipson, 2000), and similarity in activity
dynamics. Residency is linked to breeding opportunities
and reduced mortality risk (Gese et al., 1988;
Windberg, 1995), indicating no strong linkages between
this host of variables and activity dynamics. This sug-
gests that any influences of territoriality on activity may
depend on the dynamic nature of space use (Morin &
Kelly, 2017), as well as that of activity cycles.

Other factors that we did not capture, however, may
drive activity dynamics. Group membership may explain
similarity in activity dynamics; however, capturing this
influence may be complex. While two pairs of collared
coyotes did occur within social groups for an extended
period of the study, group membership was otherwise
dynamic and other co-occupancy between collared indi-
viduals was fleeting. Because of this, linking dynamic
group membership to dynamic activity patterns is not
straightforward and likely requires more data than were
available at the time of this study. Social rank within a
territorial group is believed to affect behavioral responses
of individuals to resource limitation (Polansky
et al., 2013), which is known to influence several aspects
of coyote behavior (Bekoff & Wells, 1982). However,
social rank is difficult to study in semi-cryptic carnivores,
particularly habitats with dense vegetation, due to limited
visibility and confounding effects of observer presence
(Bekoff & Wells, 1986). Thus, we were unable to evaluate
the effect of coyote social rank within a social group on
behavior. Interestingly, the first group revealed in our
clustering showed a considerably more abrupt change
from acyclic winter behavior to a strong daily cycle in
spring, which may correspond to breeding (Bekoff &
Gese, 2003). It is possible that these individuals shifted
behavior to whelp or assist with rearing pups (Bekoff &

Wells, 1986), thus this pattern could potentially be linked
to alpha or beta status within a social group.

Further, while we were able to show that individuals
within a population diverged in activity patterns, we could
not directly assess whether this was related to their choice
of prey or their mode of hunting in this study. Both of these
constraints may be alleviated by rapidly developing video
bio-logging technology (de la Rosa, 2019). Video data would
provide needed information on social interactions as well
as prey choice without biases associated with human
observers. This information could be used in conjunction
with our methodology to evaluate relationships between
activity dynamics, social rank, and foraging strategy. Video
data may also allow testing whether movement activity is a
reliable predictor of a predator’s risk to a prey species.
While most studies assume that movement activity does
serve well as a risk predictor (Kohl et al., 2018), this may
not be the case in some circumstances. For example, in
vision-based hunters, success may depend on external con-
ditions, such as light levels or visibility in a given habitat.
In such a case, lethality may be decoupled from activity.
Video data would allow direct comparisons between move-
ment activity and dynamics of predator lethality as predic-
tors of LOF dynamics.

In either case, using species-level activity patterns as
a proxy for temporal variation in predation risk assumes
that the mean activity pattern is representative of individ-
uals that prey on the prey species of interest. However,
the mean activity pattern may poorly predict dynamics if
behavior patterns diverge across individuals. This has
long been recognized in carnivore behavior research
(Gittleman & Harvey, 1982), and is relevant to LOFs
when the groups of activity patterns represent predators
with different foraging strategies. Our results suggest that
trends and intraspecific variation in predator activity
cycles should be taken into account in LOF research.

The LOF concept is a unifying idea, bridging animal
behavior, habitat selection, movement, and population
dynamics. It has great potential as both a theoretical and
heuristic tool, as well as implications for generating spatio-
temporally targeted management solutions to predator
issues. However, to realize the potential of the LOF, we
must not overlook critical aspects of predator ecology with
simple assumptions. Acknowledging the role of differential
behavior within predator populations further advances the
concepts utility. We demonstrated the complexity and
interindividual variation in coyote behavior, and argue that
its explicit consideration will further aid the LOF concept
in explaining the complexity of predator—prey dynamics.
Acknowledging and accounting for intraspecific differences
in activity will reduce unmodeled error in studies of LOF
dynamics, perhaps clarifying equivocal support in previous
work. By considering intraspecific behavioral variation
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explicitly, we can gain a much clearer picture of the com-
plexity, drivers, and ecological effects of fear.
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