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ABSTRACT 

 

Resource Selection and Landscape Connectivity of  

the Ocelot (Leopardus pardalis) in Southern Texas 

December 2021 

Amanda M. Veals, B.S. University of Arizona, M.S. University of Arizona 

Chairman of Advisory Committee: Dr. Michael E. Tewes 

 

Wildlife species across the globe are faced with landscapes that are becoming 

increasingly difficult to traverse because of habitat loss and degradation. Roadway networks are 

widespread and significant anthropogenic influences on the landscape that can have profound 

impacts on wildlife populations. Understanding how organisms perceive barriers to movement, 

or landscape resistance, is important for the conservation and management of wildlife 

populations threatened by habitat fragmentation and loss. The ocelot (Leopardus pardalis) is an 

endangered felid in the United States, with remnant populations in the Lower Rio Grande Valley 

(LRGV) of southern Texas. An estimated 95% of native Tamaulipan thornshrub had been 

cleared for agriculture and urban development which has led to the LRGV being classified as 

one of the most rapidly developing urban areas in the United States today. This development 

corresponded to an increase in road collisions and a decrease in available habitat for ocelots. To 

guide efforts to mitigate ocelot road mortalities, I have modeled probability of landscape use by 

ocelots as a function of environmental resources (e.g., vegetation cover) and road characteristics 

at the individual and population level. I modeled resource selection from animal location data 

collected via VHF and GPS radio collars from 1982–2017. I quantified spatio-temporal 

consistent habitat for ocelots compared to land ownership. I evaluated differences in individual 
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behavior to habitat and road variables using functional response analyses. I evaluated potential 

movement pathways between habitat patches and across roads based on landscape resistance 

scenarios using spatially absorbing Markov chains. This project will inform the placement of 

future road crossing structures to decrease ocelot-vehicle collisions and increase landscape 

permeability for this endangered species. This information will assist Texas Department of 

Transportation with ocelot conservation objectives. 
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CHAPTER 1: INTRODUCTION 

Human mediated change to the landscape has been identified as a major threat to 

biodiversity. Across the globe, wildlife species face landscapes that are becoming increasingly 

fragmented and degraded. Efforts to retain landscape connectivity are a conservation priority in 

response to land development, road networks, and climate change. Many species, especially 

mammals, require large areas to maintain population connectivity and these species can be 

particularly sensitive to reductions in landscape connectivity and loss of habitat due to human 

disturbance. It is therefore critical to understand the impacts human activities have on animal-

habitat relationships for the conservation of threatened and endangered species. 

Human activity on the landscape can lead to changes in animal movement, survival, and 

reproductive rates. Landscape connectivity and resource availability have changed drastically for 

numerous species over the last several decades as human populations continue to expand and 

agricultural demands increase. Therefore, evaluating trends in habitat and behavioral responses is 

critical. However, long-term habitat studies are rare, often due to challenges in monitoring. 

Habitat and species conservation strategies hinge on in depth knowledge of space use by animals 

with emerging threats to habitat often best understood from broad-scale, long-term monitoring.  

Roads are a prime example of increased human activity over the last several decades on 

the landscape that can lead to drastic changes in animal behavior and population persistence. 

Roads can have large negative impacts on wildlife populations directly from vehicle collisions or 

indirectly from barriers to movement and behavioral avoidance. Long-term studies on the 

impacts of roads on wildlife species can greatly improve conservation efforts and mitigation 

plans.  
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Previous research indicates mammals with large spatial requirements, like carnivores, 

should be considered priorities when mitigating the negative effects of roads on wildlife. 

Carnivores are particularly susceptible to reductions in connectivity from roads given their large 

spatial requirements and relatively low reproductive rates. I examined habitat use and landscape 

connectivity for an endangered species that is directly threatened by habitat loss and vehicle-

collisions. 

I focused on the ocelot (Leopardus pardalis), an endangered felid in the United States 

(US) with the only known breeding populations isolated to South Texas. Ocelots are 

hypothesized to be habitat specialists in Texas, selecting for dense woody cover such as native 

Tamaulipan thornshrub. However, urbanization and agricultural development have led to the loss 

and fragmentation of remaining habitat in South Texas. Further compounding this issue of 

habitat loss, ocelots are threatened by high mortality rates from vehicle collisions (35-40% for 

adults annually). South Texas, particularly the Lower Rio Grande Valley, is one of the fastest 

growing urban areas in the US. As human populations continue to expand within this area, we 

will likely see a continued increase in transportation-related problems and a decrease in quality 

of habitat for the endangered ocelot in the US. 

In my second chapter, I evaluated resource selection across South Texas by ocelots across 

roughly the last 35 years (1982–2017). I assessed spatio-temporal consistency in habitat use and 

then characterized landownership of high-quality habitat to inform conservation efforts. In my 

third chapter, I evaluated and compared functional responses of ocelots relative to environmental 

conditions across multiple decades. Behavioral responses can vary across individuals depending 

on local conditions and availability (broadly described as functional responses), which can reveal 

additional mechanisms that contribute to the distribution of ocelots in South Texas. Across these 
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two chapters, I examine habitat use across multiple spatial and temporal scales to gain a full 

picture of ocelot habitat use over the last several decades. 

In my fourth chapter, I applied my knowledge of ocelot habitat use and the concept of 

landscape resistance to model connectivity for ocelots. Landscape resistance is a measure of how 

difficult an areas is for an animal to move through. This can be based on physical barriers, such 

as roads, or behaviorally due to poor habitat. I used these connectivity models to inform wildlife 

crossing structure placement in order to reduce ocelot-vehicle collisions and increase landscape 

permeability to ocelot movement. 

Wildlife crossing structures can be an effective mitigation technique for the impacts of 

roads on species. However, high construction costs limit the number of structures that can be 

implemented. It is therefore important to optimize the placement of these structures. My 

dissertation aims to improve crossing structure placement based on multi-scale ocelot habitat use 

and connectivity.  



 
 

4 

CHAPTER 2: MONITORING HABITAT THROUGH TIME FOR AN ENDANGERED 

CARNIVORE: THE CASE OF OCELOTS IN SOUTH TEXAS FROM 1982-2017 

Abstract 

Human-mediated encroachment and fragmentation of habitat is the largest threat to biodiversity 

worldwide. Understanding the dynamic between habitat change and animal behavior is critical 

for conservation, yet long-term studies of habitat selection and monitoring are rare. We used a 

35-year dataset (1982–2017) to assess resource selection by an endangered carnivore and habitat 

specialist, the ocelot (Leopardus pardalis), in South Texas, United States (US). We used a 

timeseries of remotely-sensed imagery to map change in availability of woody cover, which is 

critical to ocelots but has decreased in availability due to anthropogenic development. We fit 

individual-specific resource selection functions to assess habitat selection for 78 ocelots at the 

landscape scale (2nd order). Ocelots were grouped based on sex and spatial data collection time 

frame, and we fit global models to estimate effect sizes across individuals within groups. We 

used group-level coefficients to map probability of use across our study area. Average 

availability of woody cover decreased since the 1980s (0.44 in 1985 to 0.39 in 2015, p < 0.001), 

and ocelots used areas with a higher proportion of woody cover (≥0.48) and farther from high-

traffic roads (0.14–14.82 km) compared to average availability (4.20 km). Both sexes were 

predicted to consistently (≥ 3 time periods) use areas with high proportions of woody cover 

around. Further, areas closer to high-traffic roads were consistently predicted as non-habitat. 

However, the extent of predicted habitat never exceeded 47% (1,515 km2) of the study area, 

illustrating the confined nature of ocelot habitat within its known US distribution.  

________________________ 

This chapter follows the style of Ecosphere journal. 



 
 

5 

We discovered strong, positive correlations (ρ = 1) in predicted ocelot use across time, which 

indicates increased use across time and ocelots keying in on intact, dense patches of woody cover 

farther from roads. Private lands consistently contained ≥79% of the predicted high-quality 

habitat over time. Therefore, the future of ocelots in the US relies on private land stewardship. 

Managers should pursue landowner incentive programs and conservation agreements to ensure 

the long-term preservation of quality habitat.   

Keywords: habitat use, habitat monitoring, ocelot, private land stewardship, resource selection 

functions, road ecology, temporal change  
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Introduction 

Human-mediated habitat change has been identified as the main threat to biodiversity 

worldwide (Vitousek et al. 1997; Tilman et al. 2017). Understanding relationships between 

wildlife and their habitat is critical for conservation of biodiversity (Cramer and Bissonette 2005) 

and improved management of natural resources (Morrison 2001). Managers need to understand 

animal-habitat relationships, particularly for species of conservation concern (Elith and 

Leathwick 2009; Holbrook et al. 2017), and have a clear definition of habitat for a species of 

interest (Morrison 2001). Identification of resource selection patterns is critical in efforts to 

conserve endangered species as it provides fundamental information and can highlight attributes 

important for survival and reproduction (Manly et al. 2002). Changes in movement, survival, and 

reproductive success of individuals may result from increased human activity on the landscape 

(Chen and Koprowski 2016a). As landscapes are altered through time, it is crucial to understand 

underlying demographic trends in animal populations and resulting changes in behavioral 

patterns (Anderson et al. 2012; Shoemaker et al. 2018). 

Evaluation of temporal changes in habitat, and subsequent behavioral responses by 

wildlife is particularly important for federally threatened or endangered species. The United 

States (US) Endangered Species Act requires the designation of ‘critical habitat,’ and implicitly 

suggests that monitoring ‘critical habitat’ over time is essential. Habitat and species conservation 

strategies hinge on knowledge of space use by animals (Aarts et al. 2008). Highly mobile species 

further complicate habitat monitoring due to large scale occupancy and use patterns, yet 

emerging threats to habitat can often only be understood from broad-scale monitoring across 

space and time (Simons-Legaard et al. 2016).  
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When planning long-term conservation efforts for animals, researchers often rely on 

temporally restricted insights generated from short-term research. In contrast, long-term studies 

and temporal monitoring of habitat can provide crucial information for conservation planning. 

Remote sensing techniques have been widely used in vegetation mapping and assessments of 

spatial distributions of wildlife (Xu et al. 2013; Mata et al. 2018). Use of remote sensing 

approaches provide the ability to monitor vegetation spanning large spatial extents, analyze 

spatial dynamics, and examine long-term data (Lombardi et al. 2020a). Remotely sensed 

repositories are increasingly being used to map land cover, monitor temporal trends, and 

compare between landscapes (Hansen et al. 2013; Savage et al. 2018; Vogeler et al. 2018). 

Satellite imagery has been widely used in building habitat models for many animal species, 

including assessments of functional landscape connectivity and designation of critical habitat for 

recovery (Morzillo et al. 2011; Roever et al. 2013). Despite these applications, long-term studies 

are often lacking in animal ecology and conservation (e.g., Bartel and Sexton 2009; Simons-

Legaard et al. 2016). 

The ocelot (Leopardus pardalis) is a federally endangered carnivore in the US and occurs 

in two remnant populations along the US-Mexico border (Janečka et al. 2016). Once ranging 

across most of the southern US, the ocelot is now restricted to extreme South Texas (Tewes and 

Everett 1986; Janečka et al. 2016). Ocelots in the US are considered habitat specialists, strongly 

linked to dense thornshrub communities (Tewes 1986; Shindle and Tewes 1998; Harveson et al. 

2004). More specifically, ocelots use dense woody vegetation, particularly native thornshrub, 

with 95% vertical and >75% horizontal canopy cover, showing avoidance for open land cover 

types at coarse spatial extents and higher orders of selection (i.e., second and first-order; Johnson 

1980; Harveson et al. 2004; Jackson et al. 2005; Horne et al. 2009).  
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In the US, <80 ocelots exist in two isolated breeding populations in South Texas (Haines 

et al. 2006; Janečka et al. 2011; Janečka et al. 2016). One population includes ~80% of ocelots in 

Texas existing on private ranchlands to the north, while the other occurs in and around Laguna 

Atascosa National Wildlife Refuge (Haines et al. 2005; Tewes 2019). Despite the close 

proximity (~30 km) between the two populations, significant genetic differentiation was 

observed (Janečka et al. 2011). Both populations occupy areas that fall within the Lower Rio 

Grande Valley (the valley). The valley is a rapidly expanding urban area resulting in increased 

infrastructure (Tiefenbacher 2001), including the expansion and development of transportation 

networks (Lombardi et al. 2020a). The absence of any detectable gene flow between the 

populations implies that human modified landscapes of the valley act as a strong barrier to ocelot 

movement (Janečka et al. 2011). With the growth of human population centers in the valley, 

ocelots are facing growing pressure to survive in an increasingly fragmented landscape. This 

pressure is exacerbated by the development of road networks, with vehicle collisions estimated 

to account for 35–40% of ocelot mortality– the highest source of direct mortality for ocelots in 

this region (Haines et al. 2005; Blackburn et al. 2021). Expansion of road networks will likely 

lead to a continued increase in transportation-related ocelot mortality and decrease in accessible 

habitat (Haines et al. 2005; Blackburn et al. 2021). 

Texas is comprised of 96% privately owned land (US Census 1991; NRI 2014). Private 

lands occupied by ocelots in Texas and to the north of the valley are predicted to have the largest 

remaining patches of woody cover by 2050 (Lombardi et al. 2020a), indicating private 

ranchlands will likely act as important refugia for ocelots in South Texas (Tewes 2019). 

However, habitat monitoring can be challenging, particularly on private lands due to 

stakeholders’ willingness and capacity to participate (Knight et al. 2010; Raymond and Brown 
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