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Assessing Risk of Disease 
Transmission: Direct Implications  
for an Indirect Science

MICHAEL J. LAVELLE, JUSTIN W. FISCHER, GREGORY E. PHILLIPS, AARON M. HILDRETH, TYLER A. CAMPBELL, 
DAVID G. HEWITT, SCOTT E. HYGNSTROM, AND KURT C. VERCAUTEREN

By definition, contact denotes the junction of at least two objects. In the context of disease transmission, contact implies 
interaction with potential to spread disease. Mischaracterization of contacts may result in inaccurate estimates of transmission 
rates. To collect more-accurate contact data among white-tailed deer (Odocoileus virginianus), we built a deer-borne contact 
detection system (DCDS) consisting of a camera and a proximity logger installed on a GPS (Global Positioning System) collar. 
We outfitted 26 adult male deer with DCDSs to record GPS locations, proximity of equipped deer to other equipped deer, and 
video of deer interactions in southern Texas during autumn 2010. From 17 continuously functional DCDSs, we documented 33 
contacts with cameras, 61 with proximity loggers, and 16 with GPS, resulting in estimated mean daily contact rates of 0.29, 0.66, 
and 0.12, respectively. Cameras and GPS underrepresented contacts among deer, whereas proximity loggers provided credible 
estimates for epidemiological modeling.

Keywords: camera, contact rate, disease transmission, Odocoileus virginianus, white-tailed deer

Research into the role of animal interactions in     
disease dynamics has benefited from a variety of animal-

borne instruments, including GPS (Global Positioning 
System) and, more recently, proximity loggers, for collecting 
interaction data relevant to the transmission of diseases, such 
as bovine tuberculosis (Ramsey et  al. 2002, Weihong et  al. 
2005, Prange et al. 2006), chronic wasting disease (Schauber 
et al. 2007, Grear et al. 2010, Habib et al. 2011), and brucel-
losis (Creech 2011, Cross et  al. 2012). However, concerns 
over the intra- and interspecific transmission of pathogens 
have increased the demand for more-efficient and -accurate 
means for collecting behavioral data related to how animals 
interact, with particular emphasis on estimating contact rates 
(Schauber and Woolf 2003, Schauber et al. 2007, Silbernagel 
et al. 2011, Robert et al. 2012).

Technologies used to monitor the movement and behav-
ior of animals, such as very-high-frequency (VHF) telem-
etry, GPS, and animal-activated cameras are well developed 
but provide information of only limited spatiotemporal res-
olution (Creech 2011, Robert et al. 2012). Infrequent interac-
tions and, more specifically, meaningful physical contacts are 
often brief and probably missed with traditional monitoring. 
Other factors that limit the recording of contacts include the 
limited battery life and coarse spatiotemporal resolution of 

these devices, environmental constraints, and technological 
limitations (Creech 2011). Furthermore, most behavioral 
information collected with VHF telemetry or GPS is based 
on assumptions made by researchers and is laden with inher-
ent error (Beringer et  al. 2004, Prange et  al. 2006, Hamede 
et al. 2009, Creech 2011).

VHF telemetry and GPS have been used to determine 
locations and movements; to estimate space use; and, more 
recently, to enable the quantification of contact rates of 
animals (Beringer et  al. 2004, Schuler 2006, Creech 2011). 
Spatial imprecision up to 28  meters (m) with GPS and 
600 m with VHF telemetry can be experienced (Frair et al. 
2010). Collars that incorporate GPS minimize the field 
effort required to collect location data relative to those 
with VHF and enable improved accuracy, thus providing a 
better representation of animal-use areas and the potential 
for an increased collection frequency (D’Eon et  al. 2002, 
Heard et al. 2008, Thompson et al. 2012). However, the level 
of activity, vegetative cover, and the orientation of the col-
lar antenna can greatly affect the ability of GPS collars to 
successfully and accurately acquire locations (Prange et  al. 
2006, Heard et al. 2008, Frair et al. 2010). Without extensive 
monitoring of activity, locations, and the timing of interac-
tions through direct observations, contacts among animals 
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equipped with VHF or GPS collars cannot be meaningfully 
assessed (Heard et al. 2008, Frair et al. 2010).

A recent major development in technology that enables 
researchers to collect more-refined data on interactions is 
the proximity logger (Prange et al. 2006, Böhm et al. 2009, 
Hamede et al. 2009, Creech 2011, Walrath et al. 2011, Robert 
et  al. 2012). Proximity loggers (or simply loggers) record 
events when equipped individuals are within a predeter-
mined distance of one another (e.g., less than 1  m) with 
greater precision than was previously possible (Prange 
et  al. 2006, Robert et  al. 2012). Loggers enhance the abil-
ity to determine the frequency and extent of interactions 
and facilitate the creation of contact networks, which are 
helpful in effectively modeling the transmission of patho-
gens and the spread of disease (Böhm et al. 2009, Hamede 
et al. 2009, Creech 2011). The behavior of white-tailed deer 
(Odocoileus virginianus) has been studied previously 
through direct observation (e.g., Hirth 1977, Ozoga and 
Verme 1985). Direct observations, however, are labor inten-
sive and provide limited inference when they are conducted 
on animals in confinement or unnatural settings where 
visibility is sufficient for consistent observation (Prange 
et al. 2006). Observations can be limited and biased by vis-
ibility, and it is difficult to directly and efficiently observe 
free-ranging deer without affecting their behavior (Beringer 
et  al. 2004). Therefore, the collection of visually acquired 
and unbiased contact data on nocturnal or secretive ani-
mals is challenging (Creech 2011, Thompson et al. 2012). In 
attempts to collect candid behavioral data with broad pop-
ulation-based inference, researchers sought alternatives and 
employed automated cameras (e.g., Gysel and Davis 1956, 
Winkler and Adams 1968, Swann et al. 2004). The next evo-
lutionary development in technology for monitoring behav-
ior was mobile cameras that could be mounted on animals 
to capture imagery of what the equipped individuals were 

seeing and doing (Marshall 1998, Moll 
et al. 2007, Lavelle et al. 2012, Thompson 
et al. 2012).

Although others have used GPS 
(e.g., Schauber et  al. 2007) and loggers 
(Walrath et  al. 2011) to infer physi-
cal contact among individual deer, the 
use of cameras enables documenta-
tion of true contacts for addressing the 
related potential for disease transmission 
through interactions (Lavelle et al. 2012, 
Thompson et  al. 2012). Subsequently, 
researchers began investigating animal-
borne video data collection systems for 
white-tailed deer (Beringer et  al. 2004, 
Moll et  al. 2007, Moll 2008). Imagery 
provides confirmatory evidence of 
events, whereas the methods mentioned 
above simply provide suggestions as to 
what may have occurred in proximity. 
In this observational study in which a 

large-scale deployment of animal-borne cameras was imple-
mented, our primary objective was to document pre-breed-
ing-season contacts among individual male deer equipped 
with cameras, loggers, and GPS to explore the reliability of 
the estimates of contact rates derived from the these devices 
for portraying the risk of disease transmission.

Measuring contact rates
We opportunistically captured 26 male white-tailed deer 
using helicopter net gunning inside a 405-hectare fenced 
property near Zapata, Texas (26  degrees [°] 54  minutes 
[′] north, 99°16′ west), in the South Texas Plains region 
between 8:00  a.m. and 12:00  p.m. on 29 November 2010. 
We equipped each deer with a deer-borne contact detection 
system (DCDS), which included a camera and a logger (see 
below) installed on a store-on-board GPS collar (figure  1; 
TGW-4500, Telonics, Mesa, Arizona; see Lavelle et al. 2012 
for details). We deployed DCDSs during the beginning of 
the breeding season for white-tailed deer in the region, 
which peaks on approximately 21 December (Illige 1951, 
Hellickson 2002). The weight of each DCDS was 1.5  kilo-
grams, or approximately 2% of a deer’s estimated body mass 
based on regional weights of adult male deer (Hellickson 
2002). All of the collars had release mechanisms and were 
programmed to drop off the deer 14  days after deploy-
ment. All animal handling followed protocols approved by 
the Institutional Animal Care and Use Committee of the 
US Department of Agriculture’s Animal and Plant Health 
Inspection Service, Wildlife Services, National Wildlife 
Research Center (Quality Assurance protocol no. 1591).

Motion-activated cameras.  We affixed cameras (model 
119435C, Trophy Cam, Bushnell Outdoor Products, 
Overland Park, Kansas) to the GPS unit housings. The cam-
eras were activated by a passive-infrared motion sensor set 

Proximity logger

Camera
and
GPS

Figure 1. Images of a deer-borne contact detection system, which included 
cameras, proximity loggers, and GPS (Global Positioning System) transmitters 
for documenting interactions among white-tailed deer (Odocoileus 
virginianus) near Zapata, Texas, in 2010. The red light-emitting diode of the 
proximity logger indicates whether a contact is being recorded. Photographs: 
Michael J. Lavelle. Deer 1 is on the right, and deer 25 is on left.

http://bioscience.oxfordjournals.org
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at the medium sensitivity setting. The manufacturer-stated 
specifications for the sensor were a range of 0–13.7 m and 
a trigger speed of less than 1 second. Video was captured at 
30 frames per second, in color during daylight and in black 
and white at night, with the aid of 32 infrared-emitting 
diodes. We programmed the cameras to record a 30-second 
video segment followed by a time lag of 5  minutes before 
triggering again when the motion sensor was triggered. We 
reviewed the video and identified most deer captured on 
video by the distinguishing characteristics of the individuals 
(e.g., antler points, ear tags, collars). A contact was defined 
as an event in which at least two equipped deer were at most 
1 m apart.

Proximity loggers.  We attached loggers (E2C 181C, Sirtrack, 
Havelock North, New Zealand; as described in Prange et al. 
2006, Böhm et  al. 2009, and Hamede et  al. 2009) on the 
dorsal aspect of the collars. The loggers scanned continu-
ously at 1.5-second intervals, and we programmed them to 
record contacts at the most sensitive setting when at least 
two equipped deer were at most 1  m apart (figure  1). We 
conducted controlled testing to determine the detection 
distances of 20 randomly selected loggers. The mean dis-
tance at which the loggers recorded contacts was 0.95  m 
(standard deviation [SD]  = 1.11). Because of prior experi-
ence with loggers and reported variation in their ability to 
detect contacts (Walrath et al. 2011), we considered all data 
recorded by the loggers as contacts, whether or not both log-
gers recorded an event. We assumed that no false contacts 
were recorded and that at least one logger would record an 
event when an equipped deer approached to within 1 m of 
another. Loggers similar to those that we used were previ-
ously determined to be 87% effective in detecting contacts 
when they were at most 1  m apart (Walrath et  al. 2011). 
Likewise, we estimated the probability of detection (Z) of 
our loggers using Z = A/B, where A is the number of con-
tacts recorded by the cameras that were also recorded by 
the loggers and B is the total number of contacts recorded 
by the cameras. We adjusted the number of contacts and 
contact rates for the loggers to reflect the probability of 
detection using X  = Y/Z, where Y is the number of con-
tacts recorded by the loggers and X is the adjusted number  
of contacts.

GPS collars.  We programmed the GPS collars to obtain a 
fix every 15  minutes with a fix timeout of 3  minutes (the 
maximum allowable time to collect a fix before shutting 
down before another attempt). Accuracy testing at a fixed 
reference location (n  = 1586 fixes truthed with a Trimble 
GEOXH 2008; Trimble Navigation, Sunnyvale, California) 
revealed a median position error of 4.7  m and a 95% cir-
cular error of probability of 20.4  m. In previous studies 
in which GPS collars were used on deer to infer contacts, 
paired locations were used within 10–25 m and during the 
fix timeout of the GPS (2–3 minutes) to represent contacts 
though the reportedly underestimated true numbers of 

contacts (Schauber et al. 2007, Kjær et al. 2008, Habib et al. 
2011). For comparison, we categorized the locations that 
that fell within 20.4  m and our 3-minute timeout period 
to be GPS contacts. We calculated the distance from one 
GPS location to another using ArcGIS (ESRI, Redlands,  
California).

Data analysis.  To extract concurrent data relative to con-
tacts, we pooled the data from all three sources into one 
spreadsheet and sorted by date and time. We considered the 
contacts from the cameras to be true contacts, which pro-
vided specific data points for comparison with the contacts 
derived from the logger and GPS data, so we reduced the 
combined data set to include only dyads of collared deer 
that were involved in contacts recorded by the cameras. We 
determined the time during which at least one camera within 
a dyad was functional and available to record a contact (i.e., 
the time from when the first of the two collars was deployed 
until the last of the two collars failed or the collar’s memory 
became full) and labeled them dyad focal periods. We 
omitted contacts that were recorded outside of these focal 
periods. We reviewed the contacts logged by the cameras 
and examined the events from the loggers and GPS that 
occurred within 10 minutes of the camera events, classified 
them as confirmed contacts for each particular device, and 
calculated the percentage of camera contacts also detected by 
the loggers and GPS.

We used Pajek network analysis software (Pajek, 
Ljubljana, Slovenia) to create a simple network diagram 
depicting the contact networks derived from the camera 
data (figure  2). The nodes (dots) in figure  2 represent 
the individual equipped deer, and the edges (lines) rep-
resent interactions between individuals. The edges were 
weighted on the basis of the number of camera-documented 
contacts, with the lines’ widths reflecting the number of  
occurrences.

We calculated daily contact rates, standardized for variable-
length focal periods, for each device dyad by dividing the 
total number of contacts recorded by the length (in days) of 
the focal period for that dyad. We estimated mean contact 
rates (contacts per day) across dyads for each device using 
the PROC GLIMMIX function in SAS (version  9.1; SAS 
Institute, Cary, North Carolina) using restricted maximum 
likelihood, with an identity link, Gaussian error distribu-
tion, and Kenward–Roger degrees of freedom. Residual-side 
(i.e., no random effects; Littell et  al. 2006) heterogeneous 
variance estimation (variance components by device) was 
used to account for nonhomogeneous variance among the 
residuals observed for the “contact_rate  = device” model. 
We compared contact rates among the devices using linear 
contrasts (d ) and reported standard errors (SE), degrees of 
freedom (df, expressed in parentheses adjacent to d ), and 
95% confidence intervals (95% CI) for the device means and 
contrast estimates. Various additional descriptive statistics 
(the mean and SD) were estimated using the SAS PROC 
MEANS function.

http://bioscience.oxfordjournals.org
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Calculating contact rates
We recovered 24 of 26 DCDSs on the 14th day after deploy-
ment and downloaded the data from all of the devices. 
Our data set was reduced to the information collected 
by 17 functional cameras, which recorded 20,976 videos; 
the other 7  cameras did not yield data because of damage 
that occurred during the study period (e.g., water damage, 
lens puncture, tampering). From this reduced data set, we 
documented 33 contacts between equipped deer derived 
from the cameras. These contacts involved 18 dyads among 
17 individuals during an average focal period of 6.71  days 
(SD  = 3.03). During these dyad focal periods, we also 
recorded 61 and 16 contacts derived from the loggers and 
the GPS, respectively. Twenty-seven of the camera contacts 
(82%) were also recorded by the loggers and 16 by the GPS. 
Adjusting for our logger probability of detection (Z = .82) 
increased the number of logger contacts from 61 to 74. 
Furthermore, 16 camera contacts (48%) were documented 
by all three types of devices, 5 were captured solely by the 
cameras, and 3 were recorded concurrently by the cameras 
on both equipped deer.

The contact data from the cameras enabled us to con-
struct a network diagram that provides a depiction of the 
interactions among the individuals within our study area 
(figure  2). The equipped deer contacted an average of two 
other individuals (SD = 1.54), and one individual contacted 
six others. An average of 1.83 (SD = 1.20) contacts occurred 

between individuals with a maximum of five occurring 
between two individuals.

We estimated mean daily contact rates of 0.29 for the 
cameras (SE  = 0.03), 0.66 for the loggers (SE  = 0.15), and 
0.12 for the GPS (SE = 0.03), with df = 17 for each estimate 
(figure 3). The contact rates varied between the cameras and 
loggers (d (18.62)  = 0.37, SE  = 0.15, 95% CI  = 0.04–0.69), 
between the cameras and GPS (d (33.91) = –0.18, SE = 0.05, 
95% CI = –0.27 to –0.08), and between the loggers and GPS 
(d (18.46) = –0.54, SE = 0.15, 95% CI = –0.87 to –0.22). We 
experienced 100% success in logger and GPS collar function 
and a 99% successful GPS fix rate; therefore, missed GPS 
contacts due to a fix rate bias were not a concern.

From the camera images, we documented 146 occasions 
when unmarked deer were within 1 m of an equipped deer, of 
which 84 resulted in physical contact. From these 84 contacts, 
61 involved sparring, 15 were nose-to-nose contacts, 2 were 
nose-to-rump, 5 were mutual grooming, and 1 was a breed-
ing event. From those 61 sparring events, 40 deer were identi-
fiable by unique characteristics, including collars and ear tags.

Conclusions
Within this maiden deployment of DCDSs, we sought to 
maximize our chances of capturing images of interactions, 
and therefore chose to collar males just prior to the breeding 
season, when they are highly mobile and interactive (Hirth 
1977, Miller and Conner 2005, Grear et al. 2010). One dif-
ficulty in capturing behavioral data using animal-borne 
devices is the possibility of altering the behavior of the ani-
mal being monitored. To assess this possibility, researchers 
conducted a preliminary evaluation of the potential stress on 
deer resulting from collars representative of our DCDS and 
found no evidence of increased stress levels due to the col-
lars (Moll et al. 2009). We also conducted visual observations 
5 hours after the deployment of the last DCDS, during which 
three observers documented three separate equipped deer 
acting naturally and demonstrating behaviors representative 
of adult males at that time of year. For example, one collared 
deer was tending a female, and two were feeding in associa-
tion with other deer.

Our findings demonstrate the value of cameras not only 
for estimating contact rates but also for collecting descriptive 
information on the nature of contacts that may have implica-
tions for the transmission of pathogens. For example, obser-
vations of specific behaviors, such as muzzle contact with 
an aborted fetus in the case of brucellosis epidemiology, are 
needed to confirm meaningful disease transmission events 
(Creech 2011). Furthermore, documentation of an exchange 
of bodily fluids and infectious pathogens that may result 
from social interactions (e.g., mutual grooming, breeding) is 
reliant on visual evidence; collection of this evidence is now 
possible through the use of animal-borne cameras.

Unfortunately, we were able to retrieve video data from 
only 17 of the 26 cameras; therefore, we are unsure that our 
data represent all contacts that took place during the study 
among all of the equipped individuals. However, from the 

Figure 2. Network diagram depicting camera-documented 
contacts among individual white-tailed deer (Odocoileus 
virginianus) near Zapata, Texas, in 2010. Each node 
represents an individual deer (e.g., d1 is deer 1), and the 
connecting lines represent contacts between individuals 
(the weighted line widths indicate the number of distinct 
contacts) collected from camera imagery.
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26 equipped individuals, we do know that 96% (25 of 26) 
and 100% were documented by the loggers and the GPS, 
respectively, as being involved in contacts, although we have 
no video confirming these additional potential contacts. 
The rates derived from the cameras were likely biased low 
because the cameras were programmed to record for 30 sec-
onds with a 5-minute delay between triggers. With improved 
technology, continuous collection of video could overcome 
this challenge.

The cameras used in this study enabled the creation 
of a network diagram (figure  2), which can improve the 
understanding of the connectedness of individuals and the 
potential effects of social structure within the dynamics 
of disease transmission. For example, deer  8 contacted six 
other equipped deer directly and an additional two indi-
rectly. Conversely, deer 7 directly contacted only one other 
equipped deer (deer 8) and, as a result of contacting such a 
gregarious individual, may have indirectly interacted with 
another seven equipped deer. Furthermore, network dia-
grams elucidate the variability in the sociality of individuals 
and the significance of interacting with particularly risky 
individuals (i.e., super spreaders) and thereby amplifying the 
risk for spreading infectious agents of disease.

The recent introduction of innovative loggers enabled 
the collection of finescale (i.e., 1-m resolution) interaction 
data. Our 82% probability of detection was consistent with 
the 87% experienced by Walrath and colleagues (2011) 
for detecting contacts with the loggers. Consequently, we 
suggest that users of loggers consider adjusting their data 
accordingly in order to account for the probability of 

detection. Furthermore, the loggers con-
clusively provided the contact rate esti-
mates that were the most representative 
of the actual rate in our study, because 
they operated continuously and limited 
logged contacts to much closer distances 
than was detectable with GPS. Therefore, 
we found the loggers to be the best single 
option that we evaluated for estimating 
contact rates.

The accuracy of GPS receivers has 
improved, although inherent error still 
imposes an uncertainty of true loca-
tions that renders these data weak for 
inferring physical contact. For example, 
two deer equipped with GPS collars 
may exchange saliva at the same physi-
cal location, or, conversely, they may be 
40  m apart and still recorded as being 
in the same location. The rates derived 
from GPS were biased low, given the 
magnitude of difference between GPS 
and both the logger and the camera rates, 
as well as the reduced frequency of data 
acquisition and the associated contact 
detection.

Previous researchers have concluded, “Proximity does not 
provide enough information to determine whether contact 
has occurred between individuals or whether sufficient inter-
action has occurred to allow for disease transmission, but 
high frequency of close proximity events suggests active asso-
ciation between individuals and thus a higher probability of 
physical contact” (Silbernagel et al. 2011, p. 1454). A combina-
tion of devices such as our DCDS provides a more complete 
story, with photo documentation characterizing interactions 
and GPS providing the approximate locations of those inter-
actions. However, without electronically linked components, 
it is virtually impossible to consistently collect concurrent 
data, because of the nature of the technologies. For example, 
successfully obtaining a fix with GPS is not always temporally 
predictable, and attempts are not continuous. The integration 
of GPS and loggers could enable loggers to trigger a GPS fix 
attempt when they detect another collar in order to record 
the location where the interaction occurred.

To date, loggers or VHF or GPS collars verified by direct 
observation have been the only option for researchers to 
acquire verified contact data, although that process is very 
labor intensive, costly, and challenging. With time, devices 
such as our DCDS will undoubtedly alter the approaches 
to obtaining such data. Comparisons of multiple technolo-
gies for collecting contact data are rare (Creech 2011), and, 
hopefully, these results provide insight into the value of 
various sampling schemes and technologies. Although our 
evaluation provides a better understanding of contact data 
collected with various technologies, the data shared herein 
may not be representative of that exhibited elsewhere; we 

Figure 3. Mean daily contact rates among male white-tailed deer (Odocoileus 
virginianus) before the breeding season, derived from data collected by 
cameras, proximity loggers (adjusted to reflect an 82% probability of detection), 
and GPS (Global Positioning System) transmitters near Zapata, Texas, in 2010. 
The contact rates are based on user-selected sampling inputs for the devices 
used and will, therefore, vary accordingly. The error bars represent the 95% 
confidence interval.
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therefore caution against using our contact rates for model-
ing efforts without careful consideration and interpretation. 
Furthermore, we compared contact rates on the basis of 
our sampling regimes and programming parameters for 
each device (e.g., camera motion detection sensitivity and 
programmed down time, logger sensitivity, GPS fix attempt 
frequency). One must realize that unlimited combinations 
of user-selected inputs are available, and contact rates reflect 
these inputs. We provide information that can facilitate 
prescribing the most appropriate tool for estimating contact 
rates and elucidating the potential for disease transmission. 
We also provide means for improving the reliability and 
relevance of the contact rates estimated from data collected 
with various monitoring devices.

Short of conducting direct observations, only camera 
technology, such as that used in our DCDS collars, docu-
ments true physical contact but, currently, can be deployed 
only for a short time because of battery limitations. The 
nature of GPS data, with spatial imprecision and a lack of 
temporal synchronization, creates challenges when attempt-
ing to make meaningful inferences relative to contact rates 
for epidemiological modeling. Our results suggest that the 
contact rates derived from GPS data can be an underrep-
resentation of reality, and such data should be reserved for 
purposes in which (spatiotemporally) less precise informa-
tion does not affect greater outcomes, such as the predicted 
rate of the spread of a disease and the emergency disease 
management responses. Great care should be taken in select-
ing the techniques used to estimate contact rates because 
considerably varied estimates can result. Study objectives 
and the nature of a particular disease being studied should 
influence the selection and programming of the specific tool 
or combination of tools in order to optimize the results.
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