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Abstract

Competition is a complex ecological process involving individual and commu-

nity interactions at ecological and evolutionary time scales. Individuals within

and between species can compete through two mechanisms: exploitative and

interference competition. These mechanisms often co-occur, making it difficult

to develop a mechanistic understanding of competition. We used movement

data from 19 GPS-collared white-tailed deer (Odocoileus virginianus) associated

with an experimental cattle (Bos taurus) stocking event to disentangle exploit-

ative from interference competition between deer and cattle. We assumed any

effect of exploitative competition on reduced forage availability for deer would

not occur immediately, whereas interference competition would occur imme-

diately after cattle stocking, and antagonistic interactions between deer and

cattle would alter deer behavior and degrade habitat quality. We evaluated the

effects of the experimental stocking event on deer for 30-day intervals before

and after the cattle stocking event as this period was assumed to be too short

for cattle to reduce deer forage resources through exploitative competition. We

assessed the effects of interference competition using the movement metrics of

home range size, speed, and resource selection. We used home range size as a

proxy for habitat quality, assuming cattle would degrade deer habitat through

means other than loss of forage. We used speed and resource selection as indi-

cators of deer behavior. We experimentally stocked cattle at densities ranging

from 0 to 15.7 animal units/km2 to previously destocked pastures. Stocking

densities did not influence home range sizes (bβ = 17.033, 85% CI: −189.471 to

235.322) of deer. However, as stocking density increased, deer decreased speed

(bβ = −0.014, 85% CI: −0.020 to −0.008) and increased selection for woody

cover (bβ = 0.047, 85% CI: 0.031 to 0.063) and sandier soils (bβ = 0.062, 85% CI:

0.033 to 0.090). Our results suggest cattle density altered deer behavior and

their realized niche within our system. Our results demonstrated mechanisms

by which competition with livestock could influence native wildlife
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populations, which can be used to inform management of multiuse working

landscapes.

KEYWORD S
cattle, interspecific competition, livestock, movement, resource selection, white-tailed deer,
working landscapes

INTRODUCTION

Competition drives interspecific and intraspecific interac-
tions and can influence ecological processes at the evolu-
tionary scale to individual behavior (Darwin & Leonard,
1859; Elton, 1946; Hutchinson, 1957). The severity of a
competitive interaction is governed by the level of niche
overlap, the availability of resources, and the behavioral,
biological, and morphological characteristics of the indi-
viduals involved (Costa-Pereira et al., 2018; Hsu et al.,
1981; Persson, 1985). Individuals can directly interact
through two mechanisms: interference and exploitative
competition (Levine, 1976; Tilman, 1987; Wootton, 1994).
Interference competition is the process in which antago-
nistic behaviors by individuals limit the accessibility of
resources by others (Anholt, 1990; Levine, 1976; Ping
et al., 2011). Exploitative competition is the process in
which individuals’ use of a common resource reduces the
per capita availability of that resource for use by others
(Anholt, 1990; Tilman, 1987; Wootton, 1994). In an era of
rapid land-use change, evolving community structure,
and expansion of invasive species, understanding compe-
tition among herbivores, particularly livestock and native
wildlife, is increasingly important.

Early models of competition explored the density-
mediated effects on population demographics without
focusing on the mechanism (Anholt, 1990; Lotka, 1920;
Tilman, 1987; Volterra, 1926); thus, these models offered
insight into food web dynamics but lacked fundamental
understanding of the processes driving these interactions.
Evaluating the relative importance of mechanisms of com-
petition is challenging because they often co-occur in natu-
ral systems and have aggregate effects on the subordinate’s
realized niche (Anholt, 1990; Joncour et al., 2022; Ping
et al., 2011; Smallegange et al., 2006). Another difficulty for
evaluating competition is that niche partitioning has often
occurred between sympatric species prior to the investiga-
tion (Connell, 1980; Stewart et al., 2002). Therefore, under-
standing if the realized niche of a species is influenced by
another requires approaches that provide observations of
the species in the presence and absence, or across a gradi-
ent of densities of the competitors (Finke & Snyder, 2008;
Hutchinson, 1957; Hsu et al., 1981; Ping et al., 2011;
Smallegange et al., 2006). Furthermore, studies must isolate

each mechanism to understand its relative importance to
competition (Gallien & Carboni, 2017; Malanson et al.,
1992; Monahan & Tingley, 2012; Mooney & Cleland, 2001;
Panzacchi et al., 2015).

Evaluating competition between livestock and wildlife
might offer an opportunity to evaluate the mechanistic
processes of competition. Humans have the capability to
manipulate a competitor’s densities and presence through
livestock management and observe the subsequent effects
in a subordinate wildlife’s behavior. Furthermore, compe-
tition between livestock and wildlife has seen a resurgence
in interest with increased global demands for food and
livestock products, which often results in land conversion
and biodiversity loss (Norris, 2008; Ramankutty et al.,
2018; Song et al., 2018; Thornton, 2010). In conservation
biology, the land-sharing paradigm suggests that lower
intensity agricultural practices can result in abundant
wildlife on working landscapes (Chappell et al., 2009;
Gilroy et al., 2014). Yet, a mechanistic understanding of
how livestock influence wildlife is requisite for the optimi-
zation of land-use objectives that balance wildlife conser-
vation and agricultural production.

Cattle (Bos taurus) and white-tailed deer (Odocoileus
virginianus) are economically and culturally important
ungulates. This is particularly true in Texas, USA, where
the economic value of cattle production accounted for
about $12.3 billion in 2017 and the value of deer hunting
accounted for about $1.6 billion in 2015 (National
Agricultural Statistics Service, 2019; Outlaw et al., 2017).
In South Texas, white-tailed deer productivity is dynamic,
and understanding limiting factors, such as competition
with cattle, is needed for evaluating the land-sharing par-
adigm and the compatibility of these two species (Cook
et al., 1971; DeYoung et al., 2019; Hines et al., 2021;
Young et al., 2008). Interactions between cattle and
Odocoileus sp. tend to conform to the asymmetrical com-
petition hypothesis, in that the larger cattle are dominant
in the competitive relationship (Chaikina & Ruckstuhl,
2006; Lawton & Hassell, 1981; Persson, 1985). For exam-
ple, both mule deer (Odocoileus hemionus) and
white-tailed deer generally avoid cattle, implying interfer-
ence competition exists between cattle and deer species
(Cooper et al., 2008; Krämer, 1973; Loft et al., 1993;
Stewart et al., 2002). The inability of deer to tolerate close
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interactions with cattle limits the accessibility of
resources, and often Odocoileus sp. will use rugged ter-
rain and dense brush to avoid cattle (Cooper et al., 2008;
Depew, 2005; Kie et al., 1991; Loft et al., 1991, 1993;
Owens et al., 1991; Stewart et al., 2002). Mule deer have
altered activity patterns in response to cattle, spending
more time active and foraging rather than resting (Kie
et al., 1991). Greater competitor densities often result in
increased movement rates by the subordinate competitor
(Fronhofer et al., 2015; Liu et al., 2016); therefore, cattle
grazing may increase energetic demands and movement
of white-tailed deer.

Under conditions when resources are limited, exploit-
ative competition between cattle and deer may occur
(Anholt, 1990; Hsu et al., 1981). Deer and cattle operate on
opposing ends of the browser-grazer dietary strategy con-
tinuum (Esmaeili et al., 2021; Fulbright & Ortega-S, 2013).
However, dietary overlap increases when forage becomes
limited due to overgrazing or environmental stochasticity
(Chaikina & Ruckstuhl, 2006; Hines et al., 2021; Ortega
et al., 1997). Furthermore, cattle, due to their greater abso-
lute dietary demands as the larger ruminant, consume
approximately five times more biomass daily than deer,
and at a 20% dietary overlap, one mature cow can consume
the daily equivalent of forage needed to support one deer
for a day (Fulbright & Ortega-S, 2013; Hines et al., 2021).

We attempted to disentangle interference from exploit-
ative competition between cattle and white-tailed deer by
conducting a short study where cattle were experimentally
stocked at varying densities and measuring the immediate
behavioral responses in white-tailed deer. We posited that,
with abundant resources and limited dietary overlap,
exploitative competition between white-tailed deer and cat-
tle would be minimal immediately after a cattle stocking
event (Anholt, 1990; Villemereuil & L�opez-Sepulcre, 2011).
Therefore, any changes in white-tailed deer space use and
behavior immediately after the stocking event would be due
to interference competition with cattle (Amarasekare, 2002;
Anholt, 1990). We hypothesize that, due to niche
partitioning, white-tailed deer niche space would shift
because of interference competition independent of the
effects of exploitative competition with cattle. We predicted
that cattle would not significantly influence home range
sizes of deer, as deer will be able to compensate for interfer-
ence competition through modifications of behaviors before
adjusting total space use. We predicted white-tailed deer
would increase their movement rates to avoid cattle under
greater stocking densities. We predicted the presence of cat-
tle would also result in increased avoidance of water sources
and ranch roads by deer, as these are areas where cattle
tend to congregate. We predicted deer would increase use of
woody cover and lower quality sites, which occur on sandier
soils in this region, due to deer being displaced by cattle.

METHODS

Study area

We conducted our study on the Coloraditas Grazing
Research and Demonstration Area (hereafter
Coloraditas; 27.049142�N, 98.7735315�W) of the East
Foundation’s San Antonio Viejo Ranch (Figure 1;
Montalvo et al., 2020). The Coloraditas is about 30 km
southwest of Hebbronville, Texas, USA, and encompasses
7502 ha of native rangeland divided among 10 pastures.
Pastures are delineated by 1.3 m tall net wire fences and
have areas ranging from 581 to 991 ha. The Coloraditas is
on an ecotone between the Coastal Sand Sheet and South
Texas Brush Country ecoregions (Texas Parks and
Wildlife Department, 2014). The southeast portion of the
Coloraditas is characteristic of the Coastal Sand Sheet,
with sandier soils, more open grassland, and scattered
mesquite (Prosopis glandulosa) brush mottes. The north-
western portion is comprised of South Texas Brush
Country, with clay-loam soils and dense thorn brush for-
est (Figure 2; Natural Resources Conservation Service,
2019). The grasslands of the coastal sand sheet included
seacoast bluestem (Schizachyrium scoparium var.
littorale), tanglehead (Heteropogon contortus), and purple
threeawn (Aristida purpurea). The thornbrush forest of
the South Texas Brush Country included mesquite, brasil
(Condalia hookeri), and granjeño (Celtis pallida) and
buffelgrass (Cenchrus ciliaris; Montalvo et al., 2020). The
30-year average for the region was 56.4 cm of precipita-
tion per year; minimum temperatures averaged 8.4�C in
the winter (December, January, February) and maximum
temperatures averaged 36.8�C in the summer (June, July,
August; PRISM Climate Group, 2021). The region is con-
sidered semi-arid with most rainfall occurring in
May–June and September–October, with moderate
amounts falling in July–August, but the rain that falls in
summer is the most ecologically important (Fulbright
et al., 1990). Coloraditas lacked natural water sources,
and livestock ponds and water troughs were the only per-
manent water features available year-round independent
of cattle presence. The deer in the Coloraditas were not
managed through hunting or supplemental feeding.

Study design

Capture and collar deployment

In March 2020, we deployed 20 GPS collars (Lotek
Newmarket, ON, Canada GPS6000SD) on gestating adult
(≥3.5 years old) female white-tailed deer captured
throughout the Coloraditas. We focused on gestating
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females because they represent the group that would
most directly link competition to population dynamics
and are likely to be in a depleted nutritional state during
the cattle stocking event in November due to energetic
demands of lactation and therefore would be sensitive to

competition (Bender & Hoenes, 2017). We captured deer
through aerial net-gunning and restrained netted individ-
uals by hobbling and blindfolding the animals (Webb
et al., 2008). We transported deer from their capture loca-
tions to a central processing site via a utility terrain

F I GURE 1 The Coloraditas Grazing Research and Demonstration Area, San Antonio Viejo Ranch, Texas, USA, overlaid with the

pasture stocking densities following the cattle stocking event on November 2020 and the distribution of collared female white-tailed deer

during 6 October–16 December, 2020. The distribution was estimated using the GPS data of the 19 deer whose collars collected data.

AU, animal units.

F I GURE 2 Characteristic landscape of the (A) Texas Coastal Sand Sheet and (B) South Texas Brush Country. Photo credit: Calvin Ellis.
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vehicle. At the central processing site, we recorded
biological measurements, confirmed pregnancy during
the second trimester using ultrasonography, and fit ges-
tating deer with a collar. We estimated the age of
white-tailed deer using tooth eruption and wear (Foley
et al., 2021; Severinghaus, 1949) and programmed collars
with a constant fix rate of 3 h (8 fixes/day). We released
animals immediately following processing. We
recaptured all collared deer one year later in March 2021
to retrieve collar location data. We conducted field trials
to determine collar location error, which indicated a GPS
error of 7.48 m at the 85th quantile. All deer were cap-
tured and handled under the TAMUK IACUC permit
2020-10-19 and in accordance with the American Society
of Mammologists guidelines (Sikes and the Animal Care
and Use Committee of the American Society of
Mammalogists, 2016).

Cattle stocking

To assess the influences of cattle grazing on white-tailed
deer space use and behavior, we experimentally stocked
cattle in the Coloraditas and evaluated deer movement
for the 30 days before (6 October 2020–4 November 2020)
and the 30 days after (12 November 2020–11 December
2020) the stocking event. We excluded data during the
stocking event (5 November–11 November) to avoid
the confounding effects of human activity during cattle
stocking. The Coloraditas was previously grazed, but cat-
tle were removed during June 2018 due to poor range-
land conditions brought on by a drought. Over a 6-day
period, from 5 to 11 November 2020, we moved cattle
into six of the 10 pastures resulting in varying stocking
densities between 0 and 15.6 animal units (AU)/km2

(Figure 1). Cattle remained in the Coloraditas past the
duration of the study. A ranch personnel used roads to
visit all pastures in the Coloraditas to check cattle once
per weekday for a period of about 4–6 h, to verify cattle
did not escape designated pastures and water sources
remained active. We used program R version 4.2.1
(R Core Team, 2022) and the “raster” package (Hijmans
et al., 2022) to create a grid-based spatial representation
(i.e., raster; resolution: 15 m) of these stocking densities
from pasture shapefiles provided by the East Foundation.
We used program R version 4.2.1 (R Core Team, 2022) in
all further modeling and data preparation.

Landscape covariates

Habitat productivity for white-tailed deer is often driven
by soil characteristics (Dykes et al., 2018; Foley et al.,

2018; Lashley et al., 2015; Leopold & Krausman, 1991;
Virg�os & Tellería, 1998). In South Texas, the proportion
of sand within the surface soil horizons can affect vegeta-
tion community structure and plant nutritional value
(Box, 1959; Zhou et al., 2017). Sandier soils have lower
moisture holding capacity resulting in vegetation com-
munities that are poorer quality habitat for white-tailed
deer and have been correlated with reduced forb produc-
tion and body mass in deer (Foley et al., 2018; Fulbright
et al., 2021). We derived a geospatial vectorized map of
soil types and sand content from the Web Soil Survey
(Natural Resources Conservation Service, 2019) to evalu-
ate how white-tailed deer selection of soil texture was
altered due to the cattle stocking event. We used the
“raster” package (Hijmans et al., 2022) to convert this
map into a geospatial raster representing percent sand
content with the same extent and resolution of the cattle
stocking raster.

Water and roads are often important resources that
influence cattle space use and grazing intensity. A
non-lactating cow needs to consume 22–57 L of water per
day depending on climatic conditions (Lardy et al., 2008),
so water can restrict cattle distributions (Leeuw et al.,
2001). White-tailed deer, however, are not as spatially
restricted by water only requiring between 1.56 and
3.36 L/day to meet their metabolic requirements, much
of which may be obtained through dietary moisture
(Hewitt, 2011; Webb et al., 2007). Additionally, roads
offer ease of travel for livestock and are often utilized by
ranchers to feed and monitor animals (Roath & Krueger,
1982). In South Texas, many water sources are artificial
and are situated along roadways (Cooper et al., 2008;
Gonz�alez et al., 2014; Webb et al., 2007). Therefore, we
sourced spatial data for all water and roads from the East
Foundation and used the “raster” package (Hijmans
et al., 2022) to create continuous Euclidean distance ras-
ter layers to both these features.

Deer often make greater use of sites less preferred by
cattle such as dense woody vegetation (Cooper et al.,
2008; Depew, 2005; Loft et al., 1991). Therefore, we esti-
mated brush cover within our study site from Light
Detection and Ranging (LIDAR) data sourced from the
Texas Natural Resource Information System (2022). We
used the “lidR” package (Roussel & Auty, 2022) to create
a vegetation height raster (resolution: 1.5 m) using the
methods described by the package creators. We classified
this vegetation height raster as either brush or non-brush
by first randomly generating 500 points (37 points/km2)
within our study site and extracting vegetation height
from the raster cells the points overlayed. Using aerial
imagery, we visually assigned these points as either brush
or non-brush and then proceeded to use a random selec-
tion of 400 of these points to fit a logistic regression
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model to predict the probability of brush being the
predominant cover type of a cell from the vegetation
height of a raster cell (Li et al., 2014). We used this model
to estimate the probability of brush for the entire vegeta-
tion height raster and then assigned cell values as either
brush or non-brush using a logistic probability threshold
of 0.5. We used the remaining 100 points to evaluate
model performance of the classified raster by determining
the proportion of misidentifications (Comber et al., 2012;
Li et al., 2014). We achieved an acceptable accuracy of
91% and resampled the classified raster to the final
resolution of 15 m using the mean of the cell values to
estimate the percent cover of brush.

Analysis

Recent theoretical, methodological, and technological
advances have allowed for new opportunities to under-
stand the processes of competition (McCallen et al., 2019;
Ortega et al., 1997; Smallegange et al., 2006). GPS technol-
ogy illuminated the spatiotemporal movements of animals,
allowing for the examination of how animal behavior
changes due to the presence of a potential competitor
(Cagnacci et al., 2010; Cooper et al., 2008; Hebblewhite &
Haydon, 2010; Petroelje et al., 2021). Animal movement
data offer a promising opportunity to evaluate mechanisms
of competition. For example, Harestad and Bunnell’s
(1979) habitat productivity hypothesis linked habitat qual-
ity to home range area, predicting that an animal will use
the smallest area required to meet its life history require-
ments. Thus, independent of environmental variation due
to seasonal stochastic change and exploitative competition,
changes in habitat quality due to interference competition
should be reflected in the home range area of an animal.
Additionally, interference competition for resources should
impact the subordinate’s behavior and realized niche and
may be measured using speed or resource selection (Leo
et al., 2015; Petroelje et al., 2021; Ziv et al., 1993).

Home range

We estimated home range sizes to assess changes in habi-
tat quality for white-tailed deer as a potential conse-
quence of interference competition with cattle. We
identified home ranges by estimating utilization distribu-
tions (UD) from a dynamic Brownian bridge movement
model (DBBMM; Kranstauber et al., 2012). We choose
DBBMMs due to their ability to handle autocorrelated
movement data and used the “move” package
(Kranstauber et al., 2020) to develop the DBBMMs. For
each deer, we estimated a UD from the movement data

collected 30 days before the stocking event and a UD
from the movement data collected 30 days after the
stocking event. We estimated home range areas at
the 95% isopleth for each UD.

Since deer movement between pastures was not lim-
ited during the study, to link home range area estimates to
stocking densities, we calculated the average stocking den-
sity a deer experienced for each UD. For home range areas
estimated after the stocking event, we extracted cattle
stocking densities to the GPS data collected after
11 November 2020 and then calculated the average stock-
ing density experienced by each collared deer. We assigned
a stocking density of 0 AU/km2 to all home ranges prior to
the stocking event. We used the “lme4” package (Bates
et al., 2023) to fit a linear mixed-effect model, where home
range area was a function of stocking density and included
a random effect for an individual-specific intercept. We
identified influential parameters by determining if the 85%
CI for a variable excluded zero (Arnold, 2010).

Movement

We estimated speed (in meters per second) to evaluate
changes in white-tailed deer behavior due to the presence
of cattle. For each collared deer, we estimated the speed
between consecutive GPS locations, for those locations
collected 30 days before and 30 days after the stocking
event. We used the “animal movement tools” package
(amt; Singer et al., 2022) to estimate the speed between
consecutive GPS points, assigning the value to the origin
location. We linked speed estimates to cattle stocking
data, by using the “raster” package (Hijmans et al., 2022)
to extract stocking densities to the GPS collar data col-
lected after 11 November 2020, while those points
collected before the event were assigned the stocking
density of 0 AU/km2. We log-transformed our speed esti-
mates to reduce positive skew in our data before we fitted
a linear mixed-effects model using the “lme4” package
(Bates et al., 2023). Our model was structured to predict
the log-transformed speed estimate as a function of stock-
ing density and a random effect for an individual to
account for dependence among observations for the same
animal. Models were fitted with all data collected before
and after the stocking event. We identified informative
parameters in the model by determining if the 85% CI
excluded zero (Arnold, 2010).

Resource selection

We assessed how cattle stocking densities influenced deer
resource selection by fitting step-selection functions (SSF;
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Avgar et al., 2016; Fieberg et al., 2021; Johnson, 1980).
An SSF uses a case–control logistical model to evaluate
resource selection as the animal moves through the land-
scape (Avgar et al., 2016; Fortin et al., 2005; Thurfjell
et al., 2014). We used the functions contained within the
“animal movement tools” package (amt; Singer et al.,
2022) to prepare the data to fit the SSFs. For each deer,
we paired every actual step with 15 randomly generated
steps for the GPS data collected in the 30 days before and
after the stocking event. We generated random steps from
the individual’s step length and turn angle distributions
(Avgar et al., 2016; Thurfjell et al., 2014). We then
extracted landscape covariates (percent brush cover, per-
cent sand, distance to road, distance to water, and cattle
stocking density) to the ending points of both the actual
and random steps. We assigned a stocking density of
0 AU/km2 to the ending points of both the actual and
random steps that occurred before the stocking event. We
scaled and centered all covariates to aid in convergence
and comparison of effects across covariates. We fit three
candidate models: a null model with only an intercept, a
model containing only the additive effects of the five
covariates, and global model with an interaction between
stocking densities and the other landscape covariates
using the “survival” package (Table 1; Avgar et al., 2016;
Fieberg et al., 2021; Therneau et al., 2022). All models
included a movement kernel of step-length and turning
angle (Avgar et al., 2016), a cluster term to control for
individual variation, and a stratification term for the
paired random and actual steps. We fitted all models with
the full before and after data set, so we could evaluate
how deer selection varied after experiencing no cattle on
the landscape to encountering a range of stocking rates.

We used variance inflation factor (VIF) to check for high
collinearity (VIF > 5) of our covariates and found none
of our explanatory variables exhibited high collinearity.
We used Akaike information criterion (AIC) to ascertain
our top model and identified informative parameters by
determining if a coefficient’s 85% CI excluded zero
(Akaike, 1973, 1974; Arnold, 2010; Bolker et al., 2009).

RESULTS

Of the 20 GPS collars we deployed, we recovered location
data from 19 of the adult female white-tailed deer. One
collar failed to collect data, so this individual was
excluded from the analysis. Collars collected on average
239 locations before and 239 locations after the cattle
stocking event. All 19 deer experienced a stocking density
of 0 AU/km2 prior to the stocking event, and 3 deer were
never recorded in a pasture occupied by cattle following
the stocking event. Nine deer had GPS locations recorded
in two treatment pastures, four deer had GPS locations
recorded in three treatment pastures, and two deer had
recorded locations in at least four of the treatment
pastures. Of the GPS locations recorded after the
stocking event, 48% of the locations were recorded in the
2.7 AU/km2 pasture and 28% of the locations were
recorded in a pasture without cattle. The remaining GPS
locations were either recorded in the 6.43 AU/km2 pasture
(11%), the 15.6 AU/km2 pasture (7%), the 12 AU/km2

pasture (5%), or the 1.61 AU/km2 pasture (1%). Collared
deer experienced an average stocking density ranging
between 0 and 14.88 AU/km2 in the 30-days after the
stocking event (Appendix S1: Table S1). One deer shifted
its home range to a neighboring unstocked pasture outside
the Coloraditas but returned during the 30-day period
before the stocking event, resulting in an abnormally large
home range area estimate for that individual.

Home range area of white-tailed deer was indepen-
dent of stocking densities (bβ = 17.033, 85% CI: −189.471
to 235.322; Figure 3; Appendix S1: Table S2). The average
home range area of female white-tailed deer during this
study was 86.3 (SE= 7.87) ha and 86.0 (SE= 5.87) ha
before and after the cattle stocking event, respectively
(Figure 3). In contrast, movement and resource
selection of white-tailed deer varied with cattle stocking
density (Figures 4 and 5). Speed of white-tailed deer
decreased 1.4% (bβ=−0.014, 85% CI: −0.020 to −0.008;
Appendix S1: Table S3) for every 1AU/km2 increase in
cattle stocking densities (Figure 4). The presence of cattle
influenced resource selection of white-tailed deer; the
global model with interactions between stocking densi-
ties and the other covariates was the best fitting
SSF model (Table 1). The global model indicated that a

TAB L E 1 Ranked step-selection function candidate models

used to evaluate how white-tailed deer selection of environmental

covariates responded to the cattle stocking event that occurred in

November 2020 on the Coloraditas Grazing Research and

Demonstration Area, San Antonio Viejo Ranch, Texas, USA.

Model
name Model ΔAIC

Global PB + PS + DR + DW + SD + SL
+ TA + SD*PB + SD*PS +
SD*DR + SD*DW

0

Direct effects
only

PB + PS + DR + DW + SD
+ SL + TA

38.63

Null 1 + SL + TA 2216.03

Note: Selection was evaluated for percent brush, percent sand, distance to

road, and distance to water.
Abbreviations: AIC, Akaike information criterion; DR, distance to road;
DW, distance to water; PB, percent brush; PS, percent sand; SD, stocking
density; SL, step length; TA, turn angle.
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1AU/km2 increase in stocking densities increased the
relative selection strength of percent brush cover by 0.002
(bβ = 0.047, 85% CI: 0.031 to 0.063) and percentage of
sand in the surface soil horizon by 0.005 (bβ = 0.062, 85%
CI: 0.033 to 0.09, Table 2, Figure 5). White-tailed
deer neither selected or avoided water (bβ= 0.017, 85%
CI: −0.130 to 0.163, Table 2) or roads (bβ = −0.080, 85%
CI: −0.170 to 0.011, Table 2).

DISCUSSION

Our results suggest that interference competition
between cattle and white-tailed deer resulted in changes
in two of three behavioral metrics, speed, and resource
selection. We suspected that exploitative competition
between cattle and deer would be minimal immediately
after stocking as the Coloraditas had favorable rangeland
conditions after being destocked for two years and due to
cattle and deer operating on opposing sides of the
browser-grazer dietary continuum (Hines et al., 2021;

Ortega et al., 1997). Thus, exploitative competition with
cattle would not have significant effects on deer space
use and behavior (Anholt, 1990; Villemereuil &
L�opez-Sepulcre, 2011). Therefore, our study design was
effective at exhibiting the effects of interference competi-
tion on the shifts in the realized niche of a species mostly
independent of the exploitative effects. In the 30 days
after cattle were reintroduced to the Coloraditas, cattle
influenced white-tailed deer behavior as indicated by
reduced movement and increased selection of brush and
sandy sites with increasing cattle density. It is probable
that a longer study would exhibit further deviation in
deer niche space and behavior due to exploitative com-
petitive effects becoming more apparent.

As expected, we found white-tailed deer home ranges
were similar before and after the stocking event, indicat-
ing deer were able to compensate for interference compe-
tition with cattle through other behavioral modifications.
Additionally, exploitative competition was likely insignif-
icant because cattle grazing did not significantly reduce
forage abundance for white-tailed deer to exhibit a
change home range size. Our results differ from previous
studies that observed greater home range areas used by
deer in response to the presence of cattle grazing
(Chaikina & Ruckstuhl, 2006; Hines et al., 2021; Loft
et al., 1993). We suspect this divergence in results is due

F I GURE 3 Boxplot of the estimated home range areas of the

mature female white-tailed deer (n = 19) GPS-collared in the

Coloraditas Grazing Research and Demonstration Area of the San

Antonio Viejo Ranch, Texas, USA. Home range areas were

estimated for 30 days before and for 30 days after a cattle stocking

event (November 2020) at the 95% isopleth of a utilization

distribution created with dynamic Brownian bridge movement

models. Boxplot midlines represent the median, box limits

represent the 25th and 75th quantiles, and whiskers represent the

minimum and maximum home range area estimates, excluding

outliers. Outlier home range area estimates are represented by dots.

F I GURE 4 Influence of cattle stocking density on speed (in

meter per hour) of mature female white-tailed deer (n = 19). Speed

was estimated using the GPS data collected in the 30-day periods

before and after cattle stocking at the Coloraditas Grazing Research

and Demonstration Area, San Antonio Viejo Ranch, Texas, USA,

during November 2020. AU, animal units.
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to stronger grazing intensity and longevity of these stud-
ies relative to ours. These previous studies observed
greater shifts in rangeland conditions due to livestock
grazing, and potentially exploitative competition with
wildlife would increase with resource scarcity due to
grazing (Anholt, 1990; Dickie et al., 2022; Harestad &
Bunnel, 1979). The relative importance of exploitative
and interference competition over a longer time period in

our system is an open and important question. Our goal
was to isolate the role of interference competition with
cattle in influencing the realized niche of a native ungu-
late, and therefore, the short time period of our study was
useful in revealing this effect.

Counter to our prediction, white-tailed deer speed
experienced a modest but consistent decrease with
greater stocking densities. We suspected deer would

F I GURE 5 The influence of cattle stocking on resource selection (woody cover and percent sand in soil) of adult female white-tailed

deer (n = 19) when all other covariates held at their respective means. Selection was evaluated using the top performing step-selection

function model using data collected in the 30 days before and after cattle stocking in the Coloraditas Grazing Research and Demonstration

Area, San Antonio Viejo Ranch, Texas, USA, during November 2020. AU, animal units.

TAB L E 2 Step-selection function coefficients and their associated 85% CIs from the top fitting model examining how white-tailed

resource selection was altered following the November 2020 cattle stocking event in the Coloraditas Grazing Research and Demonstration

Area, San Antonio Viejo Ranch, Texas, USA.

Variable bβ SE 85% CI

Percent brush 0.473 0.010 0.446 to 0.501

Percent sand 0.067 0.015 0.011 to 0.122

Distance to road −0.080 0.021 −0.170 to 0.011

Distance to water 0.017 0.028 −0.130 to 0.163

Stocking density 0.071 0.035 −0.050 to 0.192

Step length 0.027 0.011 0.019 to 0.034

Turn angle −0.014 0.011 −0.033 to 0.005

Stocking density × percent brush 0.047 0.011 0.031 to 0.063

Stocking density × percent sand 0.062 0.016 0.033 to 0.090

Stocking density × distance to road −0.070 0.021 −0.141 to 0.001

Stocking density × distance to water 0.042 0.026 −0.021 to 0.105
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increase their movement to avoid cattle, as general avoid-
ance behavior by mule deer and white-tailed deer is well
supported in the literature (Cooper et al., 2008; Kie et al.,
1991; Krämer, 1973; Loft et al., 1993). Previous research
has indicated that exploitative competition can stimulate
increases in movement rates and activity of individuals,
as this behavioral modification can assist in acquiring
resources (Carbone et al., 2003; Foley et al., 2018;
Snaith & Chapman, 2005; Thouless, 1990; Werner &
Anholt, 1993). We suggest that competition coupled with
late seasonal energetic demands would cause female deer
to increase movement, as these individuals would need
to acquire resources to build reserves for winter and ovu-
lation (Bender & Hoenes, 2017; Bowyer, 1991). In a sys-
tem with limited exploitative competition, the role of
interference competition on individual speed is not as
well examined, and the mechanisms driving this behav-
ior in white-tailed deer should be further investigated.
We postulate that deer may be limiting speed to reduce
potential encounters with cattle or deer may be reducing
exploratory movements focusing on core habitats that
meet their immediate needs.

White-tailed deer experienced a shift in their realized
niche as a function of cattle competition, suggesting compe-
tition resulted in niche partitioning (Finke & Snyder, 2008;
Leo et al., 2015; Loft et al., 1991; Petroelje et al., 2021; Prins,
2000). We expected white-tailed deer to increase their use
of areas with greater woody cover, as these areas can serve
as a refuge from cattle (Cooper et al., 2008; Fulbright &
Ortega-S, 2013; Owens et al., 1991). Additionally, as
browsers, deer might have made greater use of woody cover
as potential forage source as vegetation in region would be
entering winter senescence (Esmaeili et al., 2021;
Fulbright & Ortega-S, 2013). Our results also suggest cattle
displaced white-tailed deer from sites of better quality habi-
tat, as deer selection for sandier soils increased with cattle
stocking density. Sandier soils are often associated with
poorer quality habitat for white-tailed deer (Foley et al.,
2018), which may affect deer nutrition and survival and
increased use of these poorer quality sites could have demo-
graphic consequences (Ayotte et al., 2020; Oates et al.,
2021). Alternatively, it is possible, this increased selection
for sandier sites could be evidence of facilitation as cattle
grazing can stimulate forb growth on sites with exceedingly
sandy soils (Fulbright et al., 2021). However, we do not sus-
pect this to be the case because rainfall was minimal during
our study which likely would have limited autumn forb
production (Fulbright et al., 1990).

White-tailed deer space use was not influenced by the
distribution of water or roads, indicating these features
may be either inconsequential for white-tailed deer space
use during our study or cattle were unable to restrict
access to the features. The lack of response of white-tailed

deer selection to water sources could have been driven by
the season in which our study occurred, as our study
occurred during the cooler part of the year when individ-
ual water needs would have been reduced. Alternatively,
water may have been such a significant resource that deer
were unable to alter their use of it and instead altered the
timing of water use to avoid cattle. Cooper et al. (2008)
observed comparable results when cattle grazing did not
influence white-tailed deer distribution in relation to
roads, but they did document that deer were closer to
water sources than expected at random. However, Cooper
et al. (2008) noted that a drought developed during the
warm season of their study, possibly explaining this effect.

Opportunities to isolate the mechanisms of competition
are rare in nature and require experimental approaches
(Hsu et al., 1981; Ping et al., 2011; Smallegange et al.,
2006). Previous studies limited exploitative competition by
replacing resources as they were consumed; however, we
demonstrated that exploitative competition can be minimal
when studies focus on the immediate effects of experimen-
tally instigated interactions (Ping et al., 2011; Smallegange
et al., 2006). Our approach allowed us to eliminate poten-
tial biases associated with replacing resources, as it is rare
for these resources to be distributed homogenously, which
can congregate competitors and intensify competitive inter-
actions. Furthermore, we stocked cattle across a wide gra-
dient of densities from low to nearly twice what is
considered high for the region (high-moderate grazing den-
sity for region: 8–5 AU/km2; Montalvo et al., 2020), which
allowed us to demonstrate how competitive effects of the
dominant competitors’ density influenced the subordinates’
behavior. Previous research examined the competitive
effects of cattle competition on deer at a few designated
densities (Cooper et al., 2008; Depew, 2005; Ortega et al.,
1997). We were unable to capture the long-term temporal
aspects of exploitative and interference competition, in
which we expect seasonal variation in resources and habit-
uation to competitors may alter animal behavior and space
use. Future studies should examine the duration and inten-
sity in which exploitative competition develops and its
influences on the distribution of wildlife. Human presence
could have confounded our results and influenced deer
behavior. However, human density on our site was
extremely low and standardized across treatments. Ranch
personnel visited all pastures to maintain water sources
whether cattle were present or not, and fear of humans by
deer should be minimal since hunting was prohibited on
the property. Therefore, we suspect human influences on
our results should be minimal.

Our results suggest livestock can impact wildlife
behavior even at the conservative stocking densities and
further illuminates how competition drives animal ecol-
ogy and species interactions. Competition with livestock
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can potentially impact wildlife fitness, reducing nutri-
tional condition and subsequently impacting adult sur-
vival and offspring recruitment (Ayotte et al., 2020;
Jenks & Leslie, 2003; Piasecke & Bender, 2009). We fur-
ther demonstrated how niche partitioning processes may
be impacted by interference competition before the
effects of exploitative competition, revealing that
the development of these mechanisms may occur at dif-
ferent temporal scales. By understanding these mecha-
nisms and their influences on niche space, we can
evaluate species responses to competitors and employ
management strategies to alter the intensity and outcome
of the competitive interactions. These deeper understand-
ings of the competitive process will become increasingly
important as global demands drive land conversions to
agriculture, and the coexistence of livestock and wildlife
and integration of multiple landscape objectives become
a greater priority on new and existing working land-
scapes for economic and conservation concerns.
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