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ABSTRACT 

Genomic Insights into Endangered Ocelot (Leopardus pardalis) 

Populations to Inform Species Recovery 

August 2025 

Tyler Bostwick, B.S. Wildlife Conservation and Management 

California State Polytechnic University, Humboldt 

Chair of Advisory Committee: Dr. Lisanne Petracca 

 

With habitat and species loss occurring at unprecedented rates, conservation action is 

needed to preserve threatened and endangered populations. Habitat loss and fragmentation 

isolate populations, which can result in increased susceptibility to stochastic events such as 

severe weather or disease. Small populations are also vulnerable to loss of genetic diversity due 

to genetic drift and inbreeding, both of which can reduce fitness. Reintroduction can increase 

genetic diversity and mitigate impacts of environmental stochasticity for target species. 

However, the genetic provenance of stock animals used in reintroductions can have lasting 

effects and needs careful consideration. Ocelots (Leopardus pardalis) are a target species for 

reintroduction in the United States, given that there are likely fewer than 100 individuals 

remaining in two isolated populations in South Texas. Reintroduction efforts have begun, with 

the official ground breaking of the ex-situ breeding center in 2024. To maximize the success of 

ex-situ breeding and reintroduction efforts, I: 1) assessed genetic diversity and inbreeding of wild 

ocelots and 2) analyzed genetic divergence between wild and zoo-sourced ocelots to inform the 

selection of ex-situ breeding candidates. Using whole genome sequencing, I found that wild 

ocelots had significantly lower nucleotide diversity (Ranch: 0.0017, Refuge: 0.0018, Generic: 
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0.0032, Brazilian: 0.0033) and higher inbreeding (wild: 43.23-50.67% genome in run of 

homozygosity, zoo-based: 1.13-3.57% genome in run of homozygosity) than zoo-based ocelots. 

In addition, I identified evidence of dispersal (n=5) and gene flow (n=2 first-generation 

offspring) between the wild South Texas populations. These are the first dispersers documented 

between populations since at least 1991. The offspring of dispersers had higher genetic diversity 

than either parental population, which demonstrates how gene flow can ameliorate the loss of 

genetic diversity, even among inbred populations. I evaluated the potential of zoo-based stocks 

(Brazilian and Generic) for the ex-situ breeding in reference to genetic diversity as well as 

genetic distance and divergence from wild South Texas stocks. Brazilian ocelots had the highest 

genetic diversity, with > 32,000 private alleles, while Generic ocelots had > 14,000 private 

alleles, and were less genetically divergent from wild ocelots. Overall, zoo-based stocks had 

higher greater nucleotide diversity and fewer ROH than wild stocks. Either stock would be 

suitable for ex-situ breeding, but consideration of individual variation in the selection of 

founding individuals is necessary, as ROH ranged from 0% to > 15% of the genome. This 

research is the first to show gene flow between wild ocelot populations in the United States and 

adds to the growing literature on ex-situ breeding considerations to inform species 

reintroductions, ultimately providing critical information to support ocelot reintroduction and 

recovery. 
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CHAPTER 1. Genomic effects of rare gene flow between inbred populations of ocelots 

(Leopardus pardalis) in the United States 

INTRODUCTION
1 

Loss of habitat connectivity due to rapid urbanization imperils wildlife populations (Taylor et al. 

1993, Elmqvist et al. 2015). Populations isolated by habitat loss and fragmentation are more 

vulnerable to extirpation via stochastic events (Willoughby et al. 2015).  As a result, the 

expanding urban footprint has led to species range contractions and, in some cases, species 

extinctions. Intact mammal species assemblages are present in only 24% of the world’s 

ecosystems (Ripple et al. 2014, Wolf and Ripple 2017). Overall, the global loss of genetically 

and ecologically distinct populations has demonstrated the importance and need for genetic 

management in the conservation of wildlife populations (Lacy 1997). 

 Population history and demographic factors have significant effects on the amount of 

genetic diversity in a population. The number of breeding individuals and degree of gene flow 

directly influence the amount of genetic variation present (Mayr 1954). Thus, small populations 

are disproportionately impacted by the random differences in survival and reproduction of 

individuals, termed genetic drift, which can result in the loss of genetic variation and 

accumulation of deleterious alleles (Wright 1931). Additionally, genetic diversity tends to be 

lower in populations at the edge of their range, in contrast to those at the core (Antonovics 1976, 

Brussard 1984, Hardie and Hutchings 2010). This is known as the central-marginal hypothesis, 

and occurs because those populations tend to be historically smaller and more susceptible to 

stochastic events and geographic isolation (Antonovics 1976, Hardie and Hutchings 2010).  

 
1 This thesis is written in the style of the Journal of Wildlife Management 

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.


